3D Ising Critical Point Mapped onto Lattice-based QCD Equation of State Micheal KAHANGIRWE

Based on

In collaboration with:

Steffen A. Bass, Elena Bratkovskaya, Johannes Jahan, Pierre Moreau, Paolo Parotto, Damien Price, Claudia Ratti, Olga Soloveva and Mikhail Stephanov.

University of Houston

May 20-24 2024

M.K. et al. arXiv:2402.08636v1 PRD (2024)

- CPOD 2024 Berkeley, USA

Baryon Chemical potential

~ /~-

What we know

- At $\mu_B = 0$, deconfinement transition is well established (Smooth crossover)
- At finite μ_B , QCD **critical point** is expected but not yet seen
- Lattice simulations are challenging at finite density (Fermi-sign problem)

Attempts

Direct simulation at finite μ_B like **re**weighting are employed but limited to small volumes lattices

[Giordano, M. et al JHEP.05 088(2020)] [Borsanyi, S. et al PhysRevD.105 014026(2022)] [Borsanyi, S et al PhysRevD.107, L091503 (2023)]

Extrapolation schemes are needed to describe finite density physics.

www

QCD Phase Diagram

Baryon Chemical Potential μ_{R}

Experiments

Finite density physics is achieved by lowering the $\sqrt{S_{NN}}$ in **BES II program**

Theoretical interpretation

- Hydrodynamic simulations describe the evolution of the fireball in heavy ion collisions and neutron star mergers
- An **Equation of state (EoS)** is required as an Input

It is crucial that the EoS used encompasses all existing physics knowledge with adjustable parameters

Part 1: Taylor Expansion

Part 2: T' Expansion Scheme (T ExS)

Part 3: Introducing Critical Point (3D-Ising) Part 4: Merging 3D Ising with T' Expansion (Ising-TExS)

Part 5: Constraints on the EoS

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{P(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} \frac{1}{2n!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$\frac{\chi_n^B(T,\mu_B=0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B=0}$$

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{P(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} \frac{1}{2n!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$\frac{\chi_n^B(T,\mu_B=0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B=0}$$

[Borsanyi, S. et al JHEP 10 205 (2018)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

4/19

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{P(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} \frac{1}{2n!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$\frac{\chi_n^B(T,\mu_B=0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B=0}$$

Limitations

Currently limited to μ_B/T ≤ 3 despite great computational effort
 Including one more higher-order term does not remove unphysical behavior due to truncation of Taylor series

[Bollweg, D. et al Phys.Rev.D 108 (2023) 1, 014510] [Borsanyi , S et al arXiV:2312.07528v1. (2023)]

4/19

Taylor: merging of lattice QCD results and critical behavior

$$n_B(T, \mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)$$

 $\left(\frac{\mu_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T, \mu_B)$

Taylor expansion up to $\mathcal{O}((\mu_B/T)^4)$ $\chi_n^{lat}(T) = \chi_n^{non-Ising}(T) + \frac{T_C^4}{T^4} \chi_n^{Ising}(T)$

•

Taylor: merging of lattice QCD results and critical behavior

$$n_B(T, \mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)$$

[Parotto, P et al PhysRevC. 108(1), 101.034901(2020)] [Karthein, J, et al Eur.Phys.J.Plus 136 (2021) 6, 621]

 $\frac{u_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T, \mu_B)$

Taylor expansion up to $\mathcal{O}((\mu_B/T)^4)$ $\chi_n^{lat}(T) = \chi_n^{non-Ising}(T) + \frac{T_C^4}{T^4} \chi_n^{Ising}(T)$

Taylor: merging of lattice QCD results and critical behavior

$$n_B(T, \mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)$$

[Parotto, P et al PhysRevC. 108(1), 101.034901(2020)] [Karthein, J, et al Eur.Phys.J.Plus 136 (2021) 6, 621]

 $\left(\frac{\mu_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T, \mu_B)$

Taylor expansion up to $\mathcal{O}((\mu_B/T)^4)$ $\chi_n^{lat}(T) = \chi_n^{non-Ising}(T) + \frac{T_C^4}{T^4} \chi_n^{Ising}(T)$

Part 1: Taylor Expansion

Part 2: T' Expansion Scheme (T ExS)

Part 3: Introducing Critical Point (3D-Ising)

Part 4: Merging 3D Ising with T' Expansion (Ising-TExS)

Part 5: Constraints on the EoS

Simulating at Imaginary μ_B

[Borsányi, S et al PhysRev.Lett. 108(1), 101.034901(2021)]

Simulating at Imaginary μ_B

[Borsányi, S et al PhysRev.Lett. 108(1), 101.034901(2021)]

Simulating at Imaginary μ_R

[Borsányi, S et al PhysRev.Lett. 108(1), 101.034901(2021)]

 $T'(T,\mu)$

$$\mu_B) = T \left[1 + \kappa_2^{BB}(T) \left(\frac{\mu_B}{T}\right)^2 + \kappa_4^{BB}(T) \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6 \right]$$

Simulating at Imaginary μ_B

[Borsányi, S et al PhysRev.Lett. 108(1), 101.034901(2021)] $T\frac{\chi_1^B(T,\mu_B)}{T} = \chi_2^B(T',0)$ μ_B $T'(T,\mu)$

Uses few expansion terms

- μ_B dependence is captured in T-rescaling.
- Trusted up to $\frac{\mu_B}{T} = 3.5$

$$\mu_B) = T \left[1 + \kappa_2^{BB}(T) \left(\frac{\mu_B}{T}\right)^2 + \kappa_4^{BB}(T) \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6 \right]$$

6/19

Relationship between **Taylor expansion** and **T' expansion**

•
$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\partial \chi_2'^B(T)}$$

•
$$\kappa_4^{BB}(T) = \frac{1}{360T\chi_2'^B(T)^3} \left(3\chi_2'^{B^2}\chi_6^B(T) - 5\chi_2^B(T)''\chi_4^B(T)^2\right)$$

[Borsányi, S et al PhysRev.Lett 108(1), 101.034901(2021)]

- $\kappa_2(T)$ is fairly constant over a large T-Range
- There is a separation of scale between $\kappa_2(T)$ and $\kappa_4(T)$
- $\kappa_4(T)$ is almost zero \rightarrow faster convergence
- A good agreement with HRG results at Low **Temperature**

Relationship between **Taylor expansion** and **T' expansion**

•
$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\partial \chi_2^{'B}(T)}$$

• $\kappa_4^{BB}(T) = \frac{1}{360T\chi_2^{'B}(T)^3} \left(3\chi_2^{'B^2}\chi_6^B(T) - 5\chi_2^B(T)''\chi_4^B(T)^2 \right) \quad T$

[Borsányi, S et al PhysRev.L 108(1), 101.034901(2021)]

Part 1: Taylor Expansion

Part 2: T' Expansion Scheme (T ExS)

Part 3: Introducing Critical Point (3D-Ising)

Part 4: Merging 3D Ising with T' Expansion (Ising-TExS)

Part 5: Constraints on the EoS

Mapping 3D Ising to QCD

Introducing Critical Point

3D Ising coordinates

Introducing Critical Point

3D Ising coordinates

T' expansion coordinates

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

Important relations

Relationship with BEST collaboration EoS

- The mapping is not universal
- Quadratic mapping is related to BEST Collaboration (linear) mapping $\mu_{BC}, T_{C}, \alpha'_{12}, w', \rho' \longrightarrow \mu_{BC}, T_{C}, \alpha_{1}, \alpha_{2}, w, \rho$

Transition Line

$$T'[T_C, \mu_{BC}] = T_0$$

Slope

 $T_0 = 158$ MeV - crossover temperature at $\mu_B = 0$ Choosing μ_{BC} fixes T_C and α_1 $\alpha_1 = \tan^{-1}\left(\frac{2\kappa_2(T_C)\mu_{BC}}{T_CT_T}\right)$

Examples

• $\mu_{BC} = 350 \text{ MeV}, T_C = 140 \text{ MeV}$ and $\alpha_1 = 6.6^0$

$$\mu_{BC}=600$$
 MeV, $T_C=94.3$ MeV and $\alpha_1=14^0$

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

6 parameters

Introducing Critical Point

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

$$u_{BC} = 600 \text{ MeV}, \quad T_C = 94 \text{ MeV}$$

$$T_0 = 158 \text{ MeV}, \quad \alpha_1 = 14^0$$

$$\alpha_{12} = 90^0, \quad \alpha_2 = \alpha_1 - \alpha_{12}$$

$$w = 10, \quad \rho = 0.5$$

$$T_C \left[1 + \kappa (T_C) \left(\frac{\mu_{BC}}{T_C} \right)^2 \right] = T_0$$

QCD Coordinates

11/19

Part 1: Taylor Expansion Part 2: T' Expansion Scheme (T ExS) Part 3: Introducing Critical Point (3D-Ising) **Part 4: Merging 3D Ising with T' Expansion (Ising-TExS)**

Part 5: Constraints on the EoS

Merging Ising with Lattice (Ising-T ExS)

Full Baryon Density

 $\chi_1^B(T,\mu_B) = \frac{n_B(T,\mu_B)}{T^3} = \left(\frac{\mu_B}{T}\right)\chi_{2,lat}^B(T',0)$

Lattice Term

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

Ising Term

Merging Ising with Lattice (Ising-T ExS)

Full Baryon Density

$$\chi_1^B(T,\mu_B) = \frac{n_B(T,\mu_B)}{T^3}$$

$$T' = T'_{lat}(T, \mu_B) + T'_{ct}$$

Iower order in $\left(\frac{\mu_B}{T}\right)$
Lattice Term

Introducing a Critical Point

$$T_{crit}'(T,\mu_B) \approx \left(\frac{\partial \chi_{2,lat}^B(T,0)}{\partial T} \bigg|_{T=T_0} \right)^{-1} \frac{n_B^{crit}(T,\mu_B)/T^3}{(\mu_B/T)} + \dots$$

$$Taylor[T_{crit}', n=2] \approx \left(\frac{\partial \chi_{2,lat}^B(T,0)}{\partial T} \bigg|_{T=T_0} \right)^{-1} \left[\frac{\partial (n_B^{crit}/T^3)}{\partial (\mu_B/T)} \bigg|_{\mu_B/T=0} + \frac{1}{3!} \frac{\partial^3 (n_B^{crit}/T^3)}{\partial (\mu_B/T)^3} \bigg|_{\mu_B/T=0} \left(\frac{\mu_B}{T} \right)^2 + \dots \right]$$

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

 $\frac{B}{T} = \left(\frac{\mu_B}{T}\right) \chi^B_{2,lat}(T',0)$

 $E_{rit}(T,\mu_B) - Taylor[T'_{crit}(T,\mu_B)]$

higher orders in $\left(\frac{\mu_B}{T}\right)$

Ising Term

12/19

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

Thermodynamic Observables

Parameter choice

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

$$\chi_2(T,\mu_B) = \frac{\partial(n_B/T^3)}{\partial(\mu_B/T)} \bigg|_T$$

Baryon number susceptibility

Other Observables

Parameter choice

[[]M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

$$\hat{\mu}_{B}^{\prime} \frac{n_{B}(T, \hat{\mu}_{B}^{\prime})}{T^{3}} \qquad \qquad \frac{s(T, \mu_{B})}{T^{3}} = \frac{1}{T^{3}} \left(\frac{\partial P}{\partial T}\right) \bigg|_{\mu_{B}}$$

Energy density

Part 1: Taylor Expansion Part 2: T' Expansion Scheme (T ExS) Part 3: Introducing Critical Point (3D-Ising) Part 4: Merging 3D Ising with T' Expansion (Ising-TExS) **Part 5: Constraints on the EoS**

Known constraints on the EoS

Lattice QCD disfavors $\mu_{BC} < 300$ MeV

- Choosing μ_{BC} fixes T_C and α_1
- α_{12} is fixed by physical quark mass requirement $(\alpha_{12} = \alpha_1)$

[Pradeep, M. S., & Stephanov, M PhysRevD 100(5), 056003.(2019)]

Stability and causality

w and ρ are imposing fixed stability and causality

$$c_{v} = \left(\frac{\partial s}{\partial T}\right) \bigg|_{n_{B}} > 0$$

$$\chi_2(T,\mu_B) = \left(\frac{\partial n_B}{\partial \mu_B}\right) \bigg|_T > 0$$

 $0 < c_s^2(T, \mu_B) < 1$

 $\mu_{BC} = 600 \text{ MeV}$

 $\alpha_{12} = \alpha_1$

$\mu_{BC}, T_C, \alpha_1, \alpha_2, w, \rho$ 6 free parameters

[M. K et al arXiv:2402.08636v1, PhysRevD (2024)]

17/19

Comparison of Ising-TEXS with BEST EoS

 $\mu_{BC} = 350 \text{ MeV}$ $\alpha_{12} = 90$

18/19

ho $_{0.3}$

0.2

0.1

0.0

0.0

5

 ${\mathcal W}$

15

10

20

Summary and conclusions

- We provide an **enhanced coverage** for family of EoS with a 3D Ising critical point up to $\mu_B = 700 \ MeV$ and matching lattice at low μ_B .
- mapping.
- compare with the data from the Experiment. (Beam Energy Scan II)

Disclaimer! : We do not predict the location of the critical point

Ising TExS EoS incorporates charge conjugation symmetry inbuilt directly from the Ising -QCD

Ising TExS mapping can be constrained to reproduce expectations based on physical quark masses.

Ising TExS has adjustable parameters and can be used as input in hydrodynamical simulations to

Thank you for listening !

Back up!

Important relations

Relationship of TExS with BEST Mapping

$$\mu_{BC}, T_{C}, \alpha'_{12}, w', \rho'$$

 $\tan \alpha'_{12} = \tan \alpha_1 - \tan \alpha_2$,

[M. K et al arXiv:2402.08636v1] [Parotto et al PhysRevC.101.034901(2020)]

Strength of the discontinuity

leading singular behavior of specific heat at constant pressure *cp*

$$cp = T^3 \left(\frac{(s_c/n_c) \sin \alpha_1 - \cos \alpha_1}{w \sin \alpha_{12}} \right)^2 G_{hh} \left(1 + \mathcal{O}(r^{\beta \delta - 1}) \right)$$

 $w \sin \alpha_{12}$ -Controls the strength of the jump G_{hh} – order parameter in Ising Model

6 parameters

$$\frac{\cos^2 \alpha_1}{(\cos \alpha_1)^2} \qquad w' = w \frac{1}{\cos \alpha_1} \sqrt{(\cos \alpha_1 \cos \alpha_2)^2 + (\sin \alpha_{12})^2}$$

Lattice data: Parametrization To have a smooth temperature description from 25 MeV < T < 800 MeV,

We parameterize lattice data and merge with HRG

$$\chi_{2,\text{lat}}^{B}(T) = \left(\frac{2m_{p}}{\pi x}\right)^{3/2} \frac{e^{-m_{p}/x}}{1 + \left(\frac{x}{d_{1}}\right)^{d_{2}}} + d_{3}\frac{e^{-d_{4}^{2}/x^{2} - d_{5}^{4}/x^{4}}}{1 + \left(\frac{x}{d_{1}}\right)^{-d_{2}}}$$
$$x = \frac{T}{200 \text{ MeV}} \qquad d_{i} \text{ - fitting parameters}$$

 m_p - proton mass (in units of 200 MeV)

[M. K et al arXiv:2402.08636v1]

Thermodynamic Observables

Baryon Density n_B/T^3

[M. K et al arXiv:2402.08636v1]

$$w = 15$$

 $\rho = 0.3$

