Non-monotonic specific entropy on the transition line near the QCD critical point

arXiv: 2402.09519; PRC (to appear)

Noriyuki Sogabe University of Illinois Chicago (UIC)

CPOD 2024, Lawrence Berkeley National Laboratory, May 23

Collaborators: Maneesha Pradeep (University of Maryland)

Misha Stephanov and Ho-Ung Yee (UIC)

Introduction

- How does the fireball approach the first-order chiral phase transition in heavy-ion collisions?
- Ideal hydrodynamics:

Entropy and baryon number conservation $\longrightarrow \hat{s} = \frac{s}{n} = \text{const.}$

• The universality of critical phenomena

 \longrightarrow QCD thermodynamics \simeq 3D Ising model

 \longrightarrow Universal properties of the isentropic trajectory (constant \hat{s})

Non-monotonic specific entropy

- Near T_c : $\hat{s} \sim (\text{order parameter}) \sim \pm (T T_c)^{\beta}$ ($\beta = 0.326$)
- The third law of thermodynamics: $\hat{s}(T=0) = 0$

Isentropes near the critical point

M. Pradeep, NS, M. Stephanov, and H. Yee (2024)

Criticality on the isentropes + Freeze-out curve (e.g., lensing effect, etc.)

→ Non-fluctuation signature of the critical point Preliminary

Outline

Critical EOS

C. Nonaka and M. Asakawa (2005), Parotto et al. (2020)

- Pressure: $P \sim G(h, r)$ with external field/reduced temperature
- Linear map: $(\mu, T) \leftrightarrow (h, r)$ with parameters α_1, α_2 , etc.
- Entropy and baryon number density:

$$s \equiv \left(\frac{\partial P}{\partial T}\right)_{\mu} + s_{\rm c}, \quad n \equiv \left(\frac{\partial P}{\partial \mu}\right)_{T} + n_{\rm c}$$

• Specific entropy:

Order parameter:
$$\phi = \left(\frac{\partial G}{\partial h}\right)_r$$
 Energy density: $\varepsilon = \left(\frac{\partial G}{\partial r}\right)_h$

 $\hat{s} = \left(\frac{\partial \hat{s}}{\partial \phi}\right) \phi + \left(\frac{\partial \hat{s}}{\partial \varepsilon}\right) \varepsilon + \cdots$

Non-monotonic Specific entropy

M. Pradeep, NS, M. Stephanov, and H. Yee (2024)

Parameters

M. Pradeep, NS, M. Stephanov, and H. Yee (2024)

- BEST-collaboration parameters Parotto et al. (2020)
- Vary α_2 : $|\alpha_2 \alpha_1| \sim \mathcal{O}(m_q^{2/5})$ M. Pradeep and M. Stephanov (2019)

Set	$\mu_{\rm c}~({\rm MeV})$	$T_{\rm c}~({\rm MeV})$	W	ρ	<i>α</i> ₁ (°)	α ₂ (°)	
1	350	143.2	1	2	3.85	-86.75	Default
2	"	"	"	"	"	-5	Realistic

Isentropes

M. Pradeep, NS, M. Stephanov, and H. Yee (2024)

• $\hat{s}_{c} > \cot \alpha_{1}$ (HRG side) within BEST-collaboration

Isentropes

M. Pradeep, NS, M. Stephanov, and H. Yee (2024)

• Set $\hat{s}_c < \cot \alpha_1$ by hand ($\alpha_1 = 3.85^\circ$ fixed)

Freeze-out point jump

Preliminary

Fit by $(\mu_c, T_c) = (370, 144.5) \text{ MeV}, (\alpha_1, \alpha_2) = (4.7^\circ, -5^\circ)$

More data points between, e.g., 9.2 and 11.5 GeV may capture a critical point signature.

High event statistics are **not** needed for non-fluctuation signatures

Summary

M. Pradeep, NS, M. Stephanov, and H. Yee, (2024) arXiv: 2402.09519

- Universal properties of isentropes near the QCD critical point
- Non-monotonic specific entropy determines which side of the fireball approaches the chiral phase transition line
- Non-fluctuation signature of the critical point along the freeze-out curve: chemical potential jump Preliminary

Backup

Mechanism of the jump

$$\delta \mu_{\rm th} \propto \Delta \mu_{\rm cd} = \mu_{\rm cd} - \mu_{\rm c} \sim T_{\rm c} \cos \alpha_1 (-r_{\rm cd})$$