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Thermodynamic fluctuations

* Fluctuations are important measures of criticality, due to the reduction of
the number of effective DOFs near the critical point.

Charles Cagniard’s gun barrel experiments
for the discovery of critical point (1822)

sing phase diagram Critical opalescence: § <> Aj;qp



Thermodynamic fluctuations and QCD critical point

* The intriguing hint of the QCD critical point from BES-| data relies on the
assumption of equilibrated and static medium. sionanov, 11041627 sTAR, 2112.00240
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static universality class of 3D Ising model, see also M. Pradeep’s talk

* Recent progress: non-equilibrium thermodynamic fluctuations, in particular,
non-Gaussian density fluctuations dynamics with non-fluctuating moving

background near the critical point. . xa etz 221214029 and many others
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Velocity and its fluctuations in heavy-ion collisions

QGP matter produced in HIC exhibits event-by-event collective motion.

Lagrangian specification of the flow:
observer (Ponyo) in the LRF of a fluid cell (fish)

non-equilibrated & non-static

Velocity fluctuations are essential in

measuring flow harmonics v, and

quantifying non-flow contribution. Y
XA et al, 2312.17237 |
Ponyo (2008)




Velocity fluctuations and QCD critical point

 The dynamic universality class of a critical point depends on the relevant
hydro DOFs. Critical points in the same static universality class (e.g., 3D Ising)

could differ in dynamic universality class by the involvement of velocity
fluctuations (e.g., Model B vs Model H).

moving medium Model H
Model B J baryon density couples to
baryon density advection energy-momentum tensor

(nonlinear mode coupling)

— (Onon)
AN (OUdU)

e Velocity fluctuations matter near the critical point
due to time scale hierarchy (Hydro++, Model H),
and are equally important as other thermodynamic

fluctuations far from it (hydro-kinetic theory).
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Velocity fluctuations in Brownian motion

» Einstein’s formula for diffusion coefficient in 9,0 = DV?p : cieiein, 1902
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Hydrodynamic scales

 The scale hierarchy ensures: 1) local thermalization; 2) small Knudsen number;
3) separation of fluctuations and background.

¥ hoise large number of locally thermalized
1 cells comoving with fluid
scale hierarchy el ég‘f}'\% hydro cell | |
{mic< b <€ < L éyf ____ v
T »A>qg>»k —_ -
\\
\\
N

[~k ﬂuctuation‘scale

system scale
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""" fluctuations not equilibrated at /large scales

evolution described by a set of conservation equations 0,y = V - (flux [y]) where = conserved quantities
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Correlator evolution equations

* The deterministic approach provides the truncated evolution equations for
the fluctuation correlators. xacta, 200910742, 221214029

0,G, = F [(v), Gy, Gy, ...,G, | +0(")  where G ~ "1 F.~1, M. ~ ¢.

n l ]

loop-expansion parameters: € ~ (£/£)° ~ 1/number of correlated volumes ¢ ~ \/E CLT!

- ot n all combinatorial Fi=——D Fij. = )<
8 configurations .

. . Mij = Mij, k... = Gij... =
drift noise of trees ij A ij, k /‘\ i

( —©O ) = —D o 4@ 1-pt equation including leading loop

conventional hydro equations one loop (renormalization & long-time tails)

see 1. Schaefer’s talk for alternative, stochastic approach using Model H
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Relativistic dynamics

* 1-pt: covariant Langevin equations

u-oy; = F;(y) + (y)

e.g., for velocity field y = U,

| 1
F,u — — WAIM/I (a/lp + aa(Z}f]Amyﬁ + CAﬂaAyﬁ)aﬁuD) 5/4 — = WAﬂlanyfnab

/T 2 /T
where H'' = 7;7 (egeg +e e, — gAﬂ”éab) + ?CM”(SCZ,? (FDT)

N xX) 1,./6)) = (8,.8,,+ 8,,0,.)0P(x; —x,) (Gaussian)

where we introduced spatial triad e, (a = 1,2,3) perp. to
temporal vector u,. /
€+

* n-pt: separation of the evolution at midpoint and the
relative motion to it in the equal-time hypersurface.
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Confluent formulation: correlator and derivative

* Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

Confluent correlator G

u(x1) /A(XI-X) \u(X)/ /\(Xn-x)\ ()

A(x2-x) T

G ;= Al{l(x — X).. .Al.i"(x -x)G;
boost all fields (measured at their own

local rest frame) to one common frame
(chosen at their midpoint)

Confluent derivative V

u(x+Ax)

u(x)

/ O (x+Ax)

A(A

(bV / (%)
A(AX) p(x+Ax)

(a) (b)

V.G, . =0G; ;,—n (a_)jl-é- ..i+ézbyfagyl)éil...in>
perm.

2251 J1---1y

compare the difference of a given field along the
time direction in one frame, with the equal-time
constraint preserved
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Confluent formulation: Wigner function

 Equal-time constraint « - y = 0 allows us to write y# = y%’". Thus we only need
confluent n-pt Wigner transform between y“ and g“. xactal 221214029

L . & i
W, (x;: g7, .- qy) = IH (d3y,-“ e~ iai ) 5 " Z yii |G, (x+ey),....x+ey,)
=1 =1
u(x) u(x)
A1 Xn=X+Yy, Q1
y-space X ) g-space
ux)-y;, =0 & Vi+Yo+-+Y,=0 ux)-49.=0 & 9+%9+--+49,=0
(a) (b)

“While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately

obvious how it should be generalized for the calculation of n-point correlation functions.” Romatschke, 2019
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Stochastic variables with constraint

» \elocity is not a suitable primary variable due to the constraint u”> = — 1, i.e.,
() #u,.

Thus we introduce a fluctuating 3-vector i, represented in the non-fluactuating
coordinates (e“, u,) such that .
K> H g uﬂ v

<ua> — ua . £ A

o/ __ o/ a o/
u,=1u,e,+yu,

0\

velocity fluctuation 11, is measured y . .
ooy e 2 o . 7= i) = (1 + i)'
in terms of its independent spatial

o non-negligible
components i, in the LRF of u,, non—linegri%y for

non-Gaussian dynamics.

which is a comoving “LF” of ﬁﬂ,

instead of an arbitrary fixed LF.
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Entropy measured in the comoving “lab frame”

« Entropy is measured in the non-fluctuating LRF of u, in terms of fluctuating
variables measured in the LRF of i, (related by boost 7).

VRV Cu O U o 9 “ H
S(E,n,u,) = J 7+ apii = piA—p)
X

€. energy density;  n:charge density;  u : three-velocity P ‘ \I

where y = (1 + 132621)1/2, w=¢€+p,p=pEn),

a and f are Lagrange multipliers controlling the \

fluctuations of charge and energy respectively,

in the LRF of U, LRF of u, (comoving “LF” of Iftﬂ)

N\

LRF of u,
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Confluent fluctuation evolution equations

* Fluctuation evolution equations in the impressionistic form:
IW, =igW, —yg*(W, —..)—oyW +... where L =u-V_+f- V,

sound/advection dissipation background

of which the solutions match results determined from entropy S(m, p, i ).
m: entropy per baryon;  p:pressure; u,:three-velocity

ZW.(q), Qp) = — %7((1% T qi)(W Weq) T .
abc(qh 9>, q3) — yn(q% T q2 T q3)

Wel = — (pw)™'6,, DA o )OE\D\ /oprx ogo e pgq ﬁg’q

Winm Wop VVab Wmmm Wmmp mep %pp Wmab %ab
Wed =0
abc
eqd . _ -3 ' ED Qg Edg EO C%:
W~ = 3(Bw) 36,0, ooy ED ° Qg



Rotating wave approximation

* We further introduce a local spatial dyad perpendicular to each q, such that
longitudinal velocity fluctuations decouple from their transverse partners.

m om O om the “sound-front” basis with 5 eigenvalues
d=\9, =[5p] —s O=|D,. | =|pTcwqu,| (G)=1,2 A(q) = £ ¢lq], 4,(@ =4;(q =0

3

lOU,

IWo, @ = (z icpﬂ‘lﬂ) Wo ot - S~ fo oa s

* In the “sound-front” basis RWA says

R ~ =0 — slow mode (kept)
if Z Ao (4;)
- +0 — fast mode (averaged)

a significant reduction of independent dynamic DOFs!
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RWA equations

 We end up with 1 equation for W__, and other 12 (diagrammatically different)
equations with A = (m, (i)) up to 4-pt:

LWy 441 q0)] =2 [LAI,Bl(qla)WB1A2(9q2) + 044,45 1)1z

LIWq 4,441 D25 43)]
— 3 [LAI,Bl(ql’)WBlA2A3(’q2’ q3) + LAI,Ble(qla ’ )WBlAz(an)WBzA3(9q3) T 2QA1A2,Bl(q1’ qZ’)WBlA3(’q3)] 123 »

LW a,4,4,(d1> D25 93> 44)]

=4 [LA1,B1(q1’)W31A2A3A4(’q2’ 93, q4) T 3LA1aBle(q1’ ’ )WBlAz(’qz) WB2A3A4(’q3’ q4)
+L4 g 551> )W 4 (A Wp 4.((A3)Wp 4,(:q4)

+304,4,.8,(A1> 92:)Wp 4.4,(:03: Q1) + 304 4, ,5,(d1-92s - )W31A3(»(I3)W32A4(H4)] 1234 »
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Recap

* \elocity fluctuations matter in HIC (collectivity and criticality).

* The incorporation of velocity fluctuations into the general deterministic
formalism for non-Gaussian fluctuations is challenging, but can be done
systematically.

Outlook

e Establish quantitative connection between parametrized EOS and
experiment, taking into account the non-equilibrium evolution
(including flow and its fluctuations).

 Use BES-II data to constrain the EOS and transport coefficients.

Thank You!
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