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Thermodynamic fluctuations

2

• Fluctuations are important measures of criticality, due to the reduction of 
the number of effective DOFs near the critical point.

Ising model: the phase transition
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Landau

Critical opalescence: ξ ↔ λlight

Supercritical fluids 

In 1822, Charles Cagniard de La Tour discovered the critical point of a 
substance in his famous cannon barrel experiments. Listening to 
discontinuities in the sound of a rolling flint ball in a sealed cannon 
filled with fluids at various temperatures, he observed the critical 
temperature. 

Charles Cagniard’s gun barrel experiments 

for the discovery of critical point (1822)
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• The intriguing hint of the QCD critical point from BES-I data relies on the 
assumption of equilibrated and static medium. Stephanov, 1104.1627; STAR, 2112.00240

Is there a CP between QGP and hadron gas phases?

Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Unfortunately, lattice QCD cannot reach beyond µB ⇠ 2T .

Hadron Gas

Crossover
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The Phases of QCD

1st Order Phase Transition
Critical
Point?

But 1st order transition (and thus C.P.) is ubiquitous in models of QCD:
NJL, RM, Holography, Strong coupl. Lattice QCD, . . .

M. Stephanov QCD Critical Point ASU 2020 10 / 36

Fluctuations and location of Critical Point 

Gao, Pawłowski :Phys.Lett.B 820 (2021) 136584 

CP

• Susceptibilities diverge at CP
• Ratios of moments of(net) proton multiplicty – non 

monotonic excitation function?
• CBM aims in measurements up to   𝑘6

• fRG, DSE calculations predict CP 
location in SIS100 range…

1 𝑇𝐿𝑎𝑏 = 6 𝐺𝑒𝑉/𝑢

12 𝑇𝐿𝑎𝑏 = 31 𝐺𝑒𝑉/𝑢

• Recent progress: non-equilibrium thermodynamic fluctuations, in particular, 
non-Gaussian density fluctuations dynamics with non-fluctuating moving 
background near the critical point. E.g., XA et al, 2212.14029 and many others

 static universality class of 3D Ising model, see also M. Pradeep’s talk

Thermodynamic fluctuations and QCD critical point



Velocity and its fluctuations in heavy-ion collisions
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• QGP matter produced in HIC exhibits event-by-event collective motion.

Ponyo (2008)

Lagrangian specification of the flow: 

observer (Ponyo) in the LRF of a fluid cell (fish)

Velocity fluctuations are essential in 
measuring flow harmonics  and 
quantifying non-flow contribution. 

XA et al, 2312.17237

vn

non-equilibrated & non-static
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• The dynamic universality class of a critical point depends on the relevant 
hydro DOFs. Critical points in the same static universality class (e.g., 3D Ising) 
could differ in dynamic universality class by the involvement of velocity 
fluctuations (e.g., Model B vs Model H).

Model B 
baryon density

Model H 
baryon density couples to 
energy-momentum tensor

(nonlinear mode coupling)

moving medium

advection

⟨δuδu⟩
⟨δnδn⟩

ξ  ~ω-3

Hydro

Hydro+

Hydro++

ξ  ~ω-2 ξ  ~ω-1

T

μ

Velocity fluctuations and QCD critical point

• Velocity fluctuations matter near the critical point 
due to time scale hierarchy (Hydro++, Model H), 
and are equally important as other thermodynamic 
fluctuations far from it (hydro-kinetic theory).



Velocity fluctuations in Brownian motion
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long-time tail⟨v(t)v(0)⟩ ∼ e−μt → D ∼ μ−1

with only dissipation

⟨v(t)v(0)⟩ ∼ t−3/2 → D ∼ t−1/2

with also fluctuation

• Einstein’s formula for diffusion coefficient in  : Einstein, 1905∂tρ = D∇2ρ

D = lim
t→∞

1
2t

⟨Δx2(t)⟩ = ∫
∞

0
dτ⟨v(τ)v(0)⟩

• Measurable long-time behavior:

Correlation function of scattered light intensity 
provides experimental estimate of ⟨v(t)v(0)⟩

Kubo formula



Hydrodynamic scales
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large number of locally thermalized 
cells comoving with fluid

fluctuations not equilibrated at large scales

evolution described by a set of conservation equations   where conserved quantities∂t ψ = ∇ ⋅ (flux [ψ]) ψ =

noise

• The scale hierarchy ensures: 1) local thermalization; 2) small Knudsen number; 
3) separation of fluctuations and background.



Correlator evolution equations
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∂t Gn = ℱ [⟨ψ⟩, G2, G3, …, Gn ] + Gn ∼ εn−1, Fi ∼ 1, Mij ∼ ε .where𝒪(εn)

loop-expansion parameters: ε ∼ (ξ/ℓ)3 ∼ 1/number of correlated volumes    CLT!ϕ ∼ ϵ

( )

( )

( )

Gi  i   …1   2
c

i  i   , j  j  …1   2Q 1   2L i    j  j  …1   21

( ) • :

⑨
_

;
°

@
• • •

@
O O O O

⑨ •

O
O O O O O O

-

@ @

. @

@ ⑨ @
@

@
@

@
'

@ @
@ @ @ @

@

⑨ .

0

, , ,

°
° ° °

drift noise

all combinatorial 
configurations


of trees

( )

( )

( )

ingredients

equations

( )

𝛿ij Gij…

Fi

M ij , k…

Fi ,  j…

one loop ( renormalization & long-time tails )conventional hydro equations

correlator evolution equations

S,i

⑧
...

...

:

&

· ·

&

· ·

·

· · ·
·

·
& ·
· · ·

· · ⑥
·

for OM talk

1-pt equation including leading loop

• The deterministic approach provides the truncated evolution equations for 
the fluctuation correlators. XA et al, 2009.10742, 2212.14029

see T. Schaefer’s talk for alternative, stochastic approach using Model H



Relativistic dynamics
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ŭ ⋅ ∂ ψ̆i = Fi (ψ̆) + ξi(ψ̆)

⟨ηab(x1) ηcd(x2)⟩ = (δacδbd + δadδbc) δ(4)(x1 − x2) (Gaussian)

• 1-pt: covariant Langevin equations

e.g., for velocity field ,ψ = uμ

Fμ = −
1
w

Δ λ
μ (∂λp + ∂α(2ηΔλανβ + ζΔλαΔνβ)∂βuν) ξμ = −

1
w

Δ λ
μ ∂νHab

λν ηab

Hμν
ab =

Tη
2 (eμ

a eν
b + eμ

b eν
a −

2
3

Δμνδab) +
Tζ
3

Δμνδab (FDT)where

uμ

• n-pt: separation of the evolution at midpoint and the 
relative motion to it in the equal-time hypersurface. 

where we introduced spatial triad  ( ) perp. to 
temporal vector . 

ea
μ a = 1,2,3

uμ



Confluent formulation: correlator and derivative
• Confluent formulation: covariant description for the comoving fluctuations. 

See XA et al, 2212.14029 for more details
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Λ(x2-x)

Λ(x1-x) Λ(xn-x) u(xn)
u(x1)

u(x2)

u(x)

x

x2

x1
xn

-

Confluent correlator Ḡ
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Confluent derivative ∇̄

boost all fields (measured at their own 
local rest frame) to one common frame 

(chosen at their midpoint)

compare the difference of a given field along the 
time direction in one frame, with the equal-time 

constraint preserved

Ḡi1…in = Λ j1
i1

(x − x1)…Λ jn
in

(x − xn)Ḡj1…jn
∇̄μḠi1…in = ∂μḠi1…in − n (ω̄ j1

μi1
Ḡj1…in+ω̊a

μb yb
1∂(y1)

a Ḡi1…in)perm.



Confluent formulation: Wigner function
• Equal-time constraint  allows us to write . Thus we only need 

confluent -pt Wigner transform between  and .  XA et al, 2212.14029

u ⋅ y = 0 yμ = yaeμ
a

n ya qa
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Wn(x; qa
1 , …, qa

n) = ∫
n

∏
i=1

(d3ya
i e−iqiaya

i ) δ(3) ( 1
n

n

∑
i=1

ya
i ) Ḡn(x + eaya

1 , …, x + eaya
n)

= 0+

x-space

q1x1

x2

xn

q2

qn

q-space

q1 q2 qn+

x

x1 x2+ +x = n
xn+ +

x≡ yn+

y-space

x1

x2

xn
x

x≡ yn+

= 0+

q1

q2

qn

q-space

q1 q2 qn++

u(x)

(a) (b)
= 0+y1 y2 yn++

u(x)

x

u(x) = 0yi u(x) = 0qi& &
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•
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“While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately 
obvious how it should be generalized for the calculation of n-point correlation functions.” Romatschke, 2019



Stochastic variables with constraint
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ŭμ = ŭa ea
μ+γ̆ uμ

uμ

ŭμ

γ̆

Thus we introduce a fluctuating 3-vector  represented in the non-fluactuating 
coordinates ( ) such that

ŭa
ea

μ, uμ

⟨ŭμ⟩ ≠ uμ .

velocity fluctuation  is measured 
in terms of its independent spatial 
components  in the LRF of , 
which is a comoving “LF” of , 
instead of an arbitrary fixed LF.

ŭμ

ŭa uμ
ŭμ

⟨ŭa⟩ = ua .

• Velocity is not a suitable primary variable due to the constraint , i.e.,u2 = − 1

γ̆ ≡ γ(ŭa) = (1 + ŭ2
a)1/2

non-negligible

non-linearity for 


non-Gaussian dynamics.



Entropy measured in the comoving “lab frame”
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S(ϵ̆, n̆, ŭa) = ∫x
γ̆s̆ + αγ̆n̆ − β(γ̆2w̆ − p̆)

where , , ,

 and  are Lagrange multipliers controlling the 

fluctuations of charge and energy respectively, 
in the LRF of .

γ̆ = (1 + ŭ2
a)1/2 w̆ = ϵ̆ + p̆ p̆ = p(ϵ̆, n̆)

α β

uμ

• Entropy is measured in the non-fluctuating LRF of  in terms of fluctuating 
variables measured in the LRF of  (related by boost ).

uμ
ŭμ γ̆

: energy density;      : charge density;      : three-velocityϵ n ua

uμŭμ

γ̆

γ̆

LRF of  (comoving “LF” of ) uμ ŭμ

LRF of  ŭμ



Confluent fluctuation evolution equations
• Fluctuation evolution equations in the impressionistic form:
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of which the solutions match results determined from entropy .          
: entropy per baryon;      : pressure;      : three-velocity

S(m̆, p̆, ŭa)
m p ua

ℒWn = iqWn − γq2(Wn − …) − ∂ψWn + … where ℒ = u ⋅ ∇̄x + f ⋅ ∇q
sound/advection dissipation background

ℒWab(q1, q2) = − γη(q2
1 + q2

2)(Wab − Weq
ab) + …;

ℒWabc(q1, q2, q3) = − γη(q2
1 + q2

2 + q2
3)Wabc + …; …

Weq
ab = − (βw)−1δab

Weq
abc = 0

Weq
abcd ∼ − 3(βw)−3δabδcd



Rotating wave approximation
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• We further introduce a local spatial dyad perpendicular to each , such that 
longitudinal velocity fluctuations decouple from their transverse partners.

q

Φ =
Φm

Φ±

Φ(i)

=
δm

δp ± cswq̂aδua

ta
(i)δua

(i) = 1, 2ϕ =
ϕm

ϕp

ϕa

=
δm
δp
δua

• In the “sound-front” basis RWA says
n

∑
i=1

λΦi
(qi) { = 0 ⟶ slow mode (kept)

≠ 0 ⟶ fast mode (averaged)if

the “sound-front” basis with 5 eigenvalues

 λ±(q) = ± cs |q | , λm(q) = λ(i)(q) = 0

ℒWΦ1…Φn
= (

n

∑
i=1

λΦi
(qi)) WΦ1…Φn

+ …

a significant reduction of independent dynamic DOFs!



RWA equations
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• We end up with 1 equation for , and other 12 (diagrammatically different) 
equations with  up to 4-pt: in progress 

W+−
A = (m, (i))

ℒ[WA1A2A3
(q1, q2, q3)]

= 3[LA1,B1
(q1,)WB1A2A3

(,q2, q3) + LA1,B1B2
(q1, , )WB1A2

(,q2)WB2A3
(,q3) + 2QA1A2,B1

(q1, q2,)WB1A3
(,q3)]123 ,

ℒ[WA1A2
(q1, q2)] = 2[LA1,B1

(q1,)WB1A2
(,q2) + QA1A2

(q1, q2)]12 ,

ℒ[WA1A2A3A4
(q1, q2, q3, q4)]

= 4[LA1,B1
(q1,)WB1A2A3A4

(,q2, q3, q4) + 3LA1,B1B2
(q1, , )WB1A2

(,q2)WB2A3A4
(,q3, q4)

+LA1,B1B2B3
(q1, , , )WB1A2

(,q2)WB2A3
(,q3)WB3A4

(,q4)

+3QA1A2,B1
(q1, q2,)WB1A3A4

(,q3, q4) + 3QA1A2,B1B2
(q1, q2, , )WB1A3

(,q3)WB2A4
(,q4)]1234 ,

numerical implementation welcome!



Recap
• Velocity fluctuations matter in HIC (collectivity and criticality).


• The incorporation of velocity fluctuations into the general deterministic 
formalism for non-Gaussian fluctuations is challenging, but can be done 
systematically.
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• Establish quantitative connection between parametrized EOS and 
experiment, taking into account the non-equilibrium evolution 
(including flow and its fluctuations). 


• Use BES-II data to constrain the EOS and transport coefficients. 

Outlook

Thank You!


