Search for critical point in NA61/SHINE Tobiasz Czopowicz Jan Kochanowski University, Kielce for the NA61/SHINE Collaboration S.INE Workshop on Critical Point and Onset of Deconfinement Berkeley, CA, USA May 20 - 24, 2024

Critical point (CP) – a hypothetical end point of first order phase transition line (QGP-HM) that has properties of second order phase transition.

 2^{nd} order phase transition \longrightarrow scale invariance \longrightarrow power-law form of correlation function.

These expectations are for fluctuations and correlations in the configuration space which are expected to be projected to the momentum space via quantum statistics and/or collective flow.

Asakawa, Yazaki NPA 504 (1989) 668 Barducci, Casalbuoni, De Curtis, Gatto, Pettini, PLB 231 (1989) 463

Critical Point of QGP

Predictions on the CP existence, its location and what and how should fluctuate are model-dependent.

Pandav, Mallick, Mohanty, Prog.Part.Nucl.Phys. 125 (2022) 103960 Becattini, Manninen, Gazdzicki, Phys. Rev.C73 2006

μ

The experimental search for the critical point requires a two-dimensional scan in collision energy and size of the colliding nuclei (centrality).

Search for the critical end point in heavy-ion collisions is performed by a scan in the parameters controlled in laboratory (collision energy and nuclear mass number, centrality). Conjecture is, that by changing them, we change freeze-out conditions (T, μ_B).

NA61/SHINE

Strong interactions physics:

- search for the critical point of strongly interacting matter
- study the diagram of high-energy nuclear collisions
- direct measurement of open charm

And more:

- measurements for **neutrino programs** at J-PARC and Fermilab
- measurements of nuclear fragmentation cross section for cosmic rays physics

beam momentum [A GeV/c]

Multiplicity fluctuations

Be+Be similar to p+p, Ar+Sc different \rightarrow onset of fireball (?). No collision energy dependence that could be related to the critical point observed in Ar+Sc

> NA61/SHINE, PoS CPOD2017 (2018) 012 Andronov, Kuich, Gazdzicki, Universe 9 (2023) 2, 106

Multiplicity-transverse momentum fluctuations

Be+Be similar to p+p, Ar+Sc different \rightarrow onset of fireball (?). No collision energy dependence that could be related to the critical point observed in Ar+Sc

NA61/SHINE, Acta Phys.Polon.Supp. 10 (2017) 449

CPOD 2024, 21.05.2024

T. Czopowicz (UJK)

No significant non-monotonic signal observed

NA61/SHINE, PoS(PANIC2021)238 NA61/SHINE, Status Report 2022

Lévy-shaped source (1-D):

$$C(q) \cong 1 + \lambda \cdot e^{(-qR)^{\alpha}}$$

where $q = |\overrightarrow{p_1} - \overrightarrow{p_2}|_{\text{LCMS}}$, λ describes correlation strength, R determines the length of homogeneity and Lévy exponent α determines source shape:

- α = 2 : Gaussian, predicted from simple hydro
- $\alpha = 1$: Cauchy
- $\alpha = 0.5$: conjectured value at the critical point

No indication of the critical point so far

NA61/SHINE, EPJC 83 (2023) 10, 919 NA61/SHINE, Universe 9 (2023) 7, 298

Scaled factorial moments $\mathsf{F}_{\mathsf{r}}(\mathsf{M})$ of order r

$$F_r(M) = \frac{\left\langle \frac{1}{M} \sum_{i=1}^M n_i(n_i-1)...(n_i-r+1) \right\rangle}{\left\langle \frac{1}{M} \sum_{i=1}^M n_i \right\rangle^r} \ . \label{eq:Fr}$$

- M number of subdivision intervals of the transverse momentum region Δ
- n_i number of particles in i-th bin
- $\langle ... \rangle$ averaging over events

When the system is a simple fractal, $F_r(M)$ follows a power-law dependence:

$$\mathsf{F}_{\mathsf{r}}(\mathsf{M}) = \mathsf{F}_{\mathsf{r}}(\Delta) \cdot (\mathsf{M}^2)^{\varphi_{\mathsf{r}}}$$

Additionally, the exponent (intermittency index) φ_r obeys the relation:

$$\varphi_{\rm r} = ({\rm r}-1)/2 \cdot {\rm d}_{\rm r}$$

where the anomalous fractal dimension d_r is independent of $\mathsf{r}.$

Wosiek, APPB 19 (1988) 863

Asakawa, Yazaki NPA 504 (1989) 668

Barducci, Casalbuoni, De Curtis, Gatto, Pettini, PLB 231 (1989) 463

Satz, NPB 326 (1989) 613

Czopowicz, arXiv:2309.13706

10 / 15

Cumulative transformation and independent points

Fluctuations as a function of momentum bin size

Instead of using p_x and p_y , one can use cumulative quantities:

$$\mathsf{Q}_x = \int\limits_{min}^x \rho(x) dx / \int\limits_{min}^{max} \rho(x) dx \qquad \qquad \mathsf{Q}_y(x) = \int\limits_{y_{min}}^y \mathsf{P}(x,y) dy / \mathsf{P}(x)$$

- transform any distribution into uniform one (0,1)
- remove the dependence of F₂ on the shape of the single-particle distribution
- the intermittency index of an ideal power-law system described in two dimensions in momentum space was proven to remain approximately invariant after the transformation

Additionally, $F_2(M)$ data points are independent – each one was calculated using separate sub-samples of the total available statistics.

Bialas, Gazdzicki, PLB 252 (1990) 483 Antoniou, Diakonos, https://indico.cern.ch/event/818624/

11 / 15

Proton intermittency results for Ar+Sc

Fluctuations as a function of momentum bin size

No indication for power-law increase with bin size

NA61/SHINE, EPJC 83 (2023) 9, 881

CPOD 2024, 21.05.2024

12 / 15

T. Czopowicz (UJK)

Proton intermittency results for Pb+Pb

Fluctuations as a function of momentum bin size

No indication for power-law increase with bin size

Exclusion plots

Fluctuations as a function of momentum bin size

Exclusion plots for parameters of simple power-law model:

- power-law exponent ϕ in $\left|\Delta \overrightarrow{p_{T}}\right|$ correlation function $\rho\left(\left|\Delta \overrightarrow{p_{T}}\right|\right) = \left|\Delta \overrightarrow{p_{T}}\right|^{-\phi}$, $\varphi_{2} = (\phi + 1)/2$,
- fraction of correlated particles

The intermittency index φ_2 for a system freezing out at the QCD critical endpoint is expected to be $\varphi_2 = 5/6$ assuming that the latter belongs to the 3-D Ising universality class.

Summary

- Results on net-charge fluctuations in p+p, Be+Be and Ar+Sc energy scans show no non-monotonic signal
- Obtained exponents from the Lévy-shaped source fit in the HBT analyses of pions produced in Be+Be at $\sqrt{s_{NN}} \approx 17$ GeV and Ar+Sc energy scan ares far from the values predicted for the critical point
- Results on the dependence of scaled factorial moments of multiplicity distribution on cumulative momentum bin size, analyzed using independent data points for:
 - protons in Pb+Pb at $\sqrt{s_{NN}} \approx 5$ GeV
 - protons in Pb+Pb at $\sqrt{s_{NN}} \approx 7.5$ GeV
 - protons in Ar+Sc at $\sqrt{s_{NN}}\approx 5-17~\text{GeV}$

show no indication of a power-law increase

 Exclusion plots for parameters of a simple model (ratio of correlated to background particles and power-law exponent) were presented

Status of NA61/SHINE CP search via proton intermittency

Points indicate analyzed reactions with no evidence for CP. They are placed at $T{-}\mu_B$ values calculated from Becattini, Manninen, Gazdzicki, Phys. Rev.

C73 2006

Thank You!