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Low Temperature Phases of Matter
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Inside Neutron Stars

Outer crust
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Nuclear Forces from Effective Field Theory (EFT)

EFT Hamiltonians organizes operators in powers of the momentum: Q
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Allows for error estimation®. Provides guidance for the structure of three and many-body forces.

Beane, Bedague, Epelbaum, Kaplan, Machliedt, Meisner, Phillips, Savage, van Klock, Weinberg, Wise ..



Equation of State of Dense Nuclear Matter

Quantum many-body calculations of neutron matter Neutron Matter
and nuclear matter using EFT potentials show ==110 E=NLO
: : == N°LO E= N°LO
convergence up to about twice nuclear saturation
density.

Many-body perturbation theory and Quantum Monte
Carlo methods have both been employed to
calculate the energy on dense neutron matter.

Nuclear Matter

Energy per Particle (MeV)

Drischler et al. used Bayesian methods to
systematically estimate the EFT truncation
errors in neutron and nuclear matter.

Nuclear
Saturation
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Equation of State of Neutron Star Matter

In neutron stars, matter is in equilibrium with
respect to weak interactions and contains a
small fraction (about 5-10%) of protons,
electrons and muons:
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Bounds on Neutron Star Radii

EFT predictions for the EOS can be combined

with extremal high-density EOS (with CS2 = 1) to XEFT at N°LO + causal EOS

derive robust bounds on the radius of a NS of
any mass.

The lower limit on the NS maximum mass
obtained from observations strengthen these
bounds:;

e M. >20 M, 92km< Ria<13.2 km

« M_. >2.6M, 11.2km< Ria< 13.2 km TR TR Ta—

Radius R [km]

If R1.4issmall (<11.5 km) or large (>12.5 km), it
would imply a very large speed of sound in the
cores of massive neutron stars.
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Speed of Sound in Dense Matter
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Large maximum mass and
observed radii, combined with
neutron matter calculations
suggests a rapid increase in
pressure In the neutron star
core.

Neutron stars

Causality: ¢ < 1

Conformal limit

This implies a large and non- Perturbative QCD
: ; s

monotonic sound speed In

dense QCD matter.

Suggests the existence of a
strongly interacting phase of
relativistic matter.
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Is the NS core a fermi liquid or superconductor or superfluid ?

* The equation of state is insensitive to pairing at the Fermi surface.

 Need access to low-temperature properties such as response and
specific heat to distinguish between phases.

* Neutrino cooling rates and heat capacity are exponentially
supressed due to pairing at low temperature o« exp(—A/T)

* Observations of accreting neutron stars can constrain the fraction
of the baryons or quarks that can form Cooper pairs.



Transiently Accreting Neutron Stars
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T = Deep Crustal Heating
C\;, z envelope
=~ o . . .
g During accretion nuclear reactions release: ~ 2-4 MeV / nucleon
§ 0.1 Sato (1974), Haensel & Zdunik (1990), Brown, Bildsten Rutledge (1998)
3 ' Gupta et al (2007,201 1).
3
. H/He KS 1731-260: High
10 burning accretion 1988-2000
r-p process -
108 10 12C burning
5 e- capture
10 B-decay
1011 : n emission
{ & capture :
fusion The energy is conducted to the core. Warms up old neutron
1013 stars.
103 A steady state is reached as neutrino losses from the core
1014 core balance crustal heating.

Image credit: NASA/CXC/Wijnands et al.



Measuring the Heat Capacity of the Core

Heat the star, allow it to relax, and observe the
change in temperature: Cns dI'=dQ)
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Measuring the Heat Capacity of the Core

Heat the star, allow it to relax, and observe the
change in temperature: Cns dI'=dQ)
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Constraining the Neutrino Emissivity and Heat Capacity

In systems with repeated
accretion outbursts, we can
infer the neutrino luminosity by
estimating the net crustal heat
deposition.

If cooling is observed between
accretion events, it would
constrain the specific heat. A
10% change in the core
temperature on a 10 year time
scale, would require that most
fermions are gapped- either
superfluid or superconducting.
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\apid Cooling of MXB 1659-29

1038
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Brown at al. (2018)



Pairing in the core (typical densityny ~ 4 n_ )

* High sound speed requires strong repulsive interactions.

* |n neutron matter, these interactions are modeled by the exchange of vector mesons

Questions:

1. Can fermions pair if their interactions are mediated by massive vector bosons”?
2. Can the pairing gap be related to the sound speed?

Pairing through the Kohn-Luttinger Mechanism:

Answers:
1. Yes. °P, pairing is likely.

2. In some scenarios.




Induced Pairing in Neutron Matter

. . . 3
An old subject, first studies by Fay O(mk)
and Lazer in 1968! 5 N
. . . . ] g W w— ]
see review by Gezerlis, Pethick and Schwenk arXiv:1406.6109 (2014) I I | S— e
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Large short-range repulsion due heavy ="
vector meson exchange naturally leads

>
L
to pairing in the °P, channel. >
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<

Interesting interplay between central
and spin-orbit forces.

The strength of the vector repulsion is
related to the sound speed.

kI%
2
Co = 1 + F,

Kumamoto & Reddy (2024)



Summary & Conclusions

Mass and radius measurements can and will provide strong constraints on the sound
speed In the neutron star core.

X-ray observations can provide valuable guidance but GW'’s are needed to obtains
stringent constraints.

We will need to observe and interpret thermal phenomena in accreting (and
magnetized ) neutron stars to constrain low temperature properties.

There appears to some diversity in the cooling of neutron stars. A few old accreting
neutron stars appear to be cooling rapidly.

Long term monitoring of these systems can constrain the specific heat of the core.

Screening of repulsive vector interactions provides a mechanism to pair fermions in
the P, channel.



