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Inside Neutron Stars

Nuclei and relativistic electrons. 

Neutron-rich nuclei, relativistic electrons, 
superfluid neutrons  

Neutrons (~ 90%), protons, relativistic electrons, 
muons. Description in terms of baryons remains 
useful.  Superfluid neutrons & superconducting 
protons.  

Complex strongly interacting relativistic matter. 

Description not simple in terms of either baryons 
or quarks. Quarkyonic Matter? 

Ordered quark matter?  color superconductor? 
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Nuclear Forces from Effective Field Theory (EFT) 
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3N force 4N force2N force

)LJXUH ��� 'LDJUDPV WKDW JLYH ULVH WR QXFOHDU IRUFHV LQ &K()7 EDVHG RQ :HLQEHUJ¶V SRZHU FRXQWLQJ�
6ROLG DQG GDVKHG OLQHV GHQRWH QXFOHRQV DQG SLRQV� UHVSHFWLYHO\� 6ROLG GRWHV� ILOOHG FLUFOHV DQG ILOOHG
VTXDUHV DQG FURVVHG VTXDUHV UHIHU WR YHUWLFHV ZLWK ∆i = 0, 1, 2 DQG 4� UHVSHFWLYHO\�
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EFT Hamiltonians organizes operators in powers of the momentum:

Beane, Bedaque, Epelbaum, Kaplan, Machliedt, Meisner, Phillips, Savage, van Klock, Weinberg, Wise .. 

Q

⇤B

Allows for error estimation*. Provides guidance for the structure of three and many-body forces.
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Hebeler and Schwenk (2009), Gandolfi, Carlson, Reddy (2010), Gezerlis et al. 
(2013), Tews, Kruger, Hebeler, Schwenk (2013), Holt Kaiser, Weise (2013), 
Hagen et al. (2013), Roggero, Mukherjee, Pederiva (2014), Wlazlowski, Holt, 
Moroz, Bulgac, Roche (2014), Tews et al. (2018), Drischler et al., (2020). 

Equation of State of Dense Nuclear Matter 
Quantum many-body calculations of neutron matter 
and nuclear matter using EFT potentials show 
convergence up to about twice nuclear saturation 
density. 

Many-body perturbation theory and Quantum Monte 
Carlo methods have both been employed to 
calculate the energy on dense neutron matter.    

Drischler et al. used Bayesian methods to 
systematically estimate the EFT truncation 
errors in neutron and nuclear matter.
Drischler, Furnstahl, Melendez, Phillips, (2020).
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FIG. 6. Energy per particle in PNM with truncation errors
using the ⇤ = 500MeV interactions in Table I. From left
to right, top to bottom, the panels show the order-by-order
progression of EFT uncertainties as the �EFT order increases.
The bands indicate 68% credible intervals.

useful to leave c3(kF) (N2
LO) out of our inductive model

for higher-order terms.

Additionally, the diagnostics point to the possibility
that the NN-only coefficients c0(kF) (LO) and c2(kF)

(NLO) may have a different correlation structure than
higher orders. As noted above, this is suggested by a vi-
sual inspection of Figs. 2 and 3, where c0(kF) and c2(kF)

appear much flatter than c3(kF) (N2
LO) and c4(kF)

(N3
LO). An investigation in this direction is presented

in Appendix A. There we have attempted to isolate the
strongly repulsive 3N contributions that change the cor-
relation structure by splitting the coefficients into NN-
only and residual 3N coefficients with each having differ-
ent kF dependence in yref(x). This succeeds in making
the coefficients more uniform and improves the diagnos-
tics for PNM, but does not improve SNM significantly.
Crucially, the order-by-order uncertainty bands for PNM
and SNM presented in the next section are almost un-
changed when this alternative model is used; the sat-
uration ellipses do become slightly larger though. We
provide these details, along with annotated Jupyter note-
books [50] that generate them, to promote further inves-
tigation, possibly with other EFT implementations, into
the systematic convergence of infinite matter.

FIG. 7. Similar to Fig. 6 but for SNM. The gray box depicts
the empirical saturation point, n0 = 0.164± 0.007 fm�3 with
E/A(n0) = �15.86±0.57MeV, obtained from a set of energy-
density functionals [18, 51] (see the main text for details).

FIG. 8. Credible-interval diagnostics for the E/N(n) (left-
hand side) and E/A(n) uncertainty bands (right-hand side)
for the ⇤ = 500MeV interactions in Table I; for details see
Ref. [25]. At each order we construct an uncertainty band for
the upcoming correction (not the full truncation error) and
test whether the next order is contained within it at a specific
credible interval. The expected size of fluctuations due to the
finite effective sample size of the curves is depicted using dark
(light) gray bands for the 68% (95%) interval. Both bands are
quite large, which shows that correlations are crucial to assess
whether truncation errors have been properly assigned.

C. Quantified uncertainties for PNM and SNM

The GP truncation error model described in Sec. II
combined with the hyperparameter estimates now permit
the first statistically rigorous �EFT uncertainty bands
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Equation of State of Neutron Star Matter 
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Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)

PNSM(nB = 0.34 fm−3) = 20.0 ± 5 MeV/fm3

In neutron stars, matter is in equilibrium with 
respect to weak interactions and contains a 
small fraction (about 5-10%) of protons, 
electrons and muons: 

PNSM(nB = 0.16 fm−3) = 3.0 ± 0.2 MeV/fm3

Many-body perturbation theory and 
Bayesian estimates of the EFT 
truncation errors predict: 

Christian Drischler Sophia Han Tianqi  Zhao 



Bounds on Neutron Star Radii 
EFT predictions for the EOS can be combined 
with extremal high-density EOS (with ) to 
derive robust bounds on the radius of a NS of 
any mass. 


The lower limit on the NS maximum mass 
obtained from observations strengthen these  
bounds:


• , 9.2 km <  R1.4 < 13.2 km 


• , 11.2 km <  R1.4 < 13.2 km


If R1.4 is small (<11.5 km) or large (>12.5 km), it 
would imply a very large speed of sound in the 
cores of massive neutron stars. 

c2
s = 1

Mmax > 2.0 M⊙

Mmax > 2.6 M⊙

Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)
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Figure 1. Two possible scenarios for the evolution of the speed of sound in dense matter.

For QCD at finite baryon density, we are unaware of compelling reasons to expect that c2S <
1/3, and based on the preceding arguments, we will consider two minimal scenarios, which are
illustrated in Fig. 1. The scenario labeled (a) corresponds to the case when we assume that QCD
obeys the conformal limit c2S < 1/3 at all densities, and scenario (b) corresponds to QCD violating
this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

p
3. For this case, we find that cS needs to increase very rapidly above 1 � 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews, Carlson, Gandolfi and Reddy (2018) 
Steiner & Bedaque (2016)

Large maximum mass and 
observed radii, combined with 
neutron matter calculations 
suggests a rapid increase in 
pressure in the neutron star 
core.   

This implies a large and non-
monotonic sound speed in 
dense QCD matter.  

Suggests the existence of a 
strongly interacting phase of 
relativistic matter. 

✔

✘
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Is the NS core a fermi liquid or superconductor or superfluid ?  

• The equation of state is insensitive to pairing at the Fermi surface. 


• Need access to low-temperature properties such as response and 
specific heat to distinguish between phases.   


• Neutrino cooling rates and heat capacity are exponentially 
supressed due to pairing at low temperature    


• Observations of accreting neutron stars can constrain the fraction 
of the baryons or quarks that can form Cooper pairs.  

∝ exp(−Δ/T)
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cool down to equilibrium on a much longer timescale of several
years (Rutledge et al. 2002). It is therefore possible to monitor
the cooling of such quasi-persistent transients with satellites
such as Chandra or XMM-Newton. The timescale of the cooling
is dependent on the properties of the material in the crust, such
as its thermal conductivity, and structures in the cooling curve
can give information about the nature and location of heating
sources in the crust (Brown & Cumming 2009).

Since the advent of Chandra and XMM-Newton, only a
handful of NS transients have entered quiescence after long-
duration (year or longer) outbursts. KS 1731–260 and MXB
1659–29 entered quiescence in 2001 after outbursts lasting
around 12.5 and 2.5 yr, respectively. Both sources were observed
to cool down to a constant level over a period of a few years
(Wijnands et al. 2001, 2002, 2003, 2004; Wijnands 2002, 2004;
Rutledge et al. 2002; Cackett et al. 2006, 2008), though a recent
observation of KS 1731–260 at more than 3000 days post-
outburst suggests it may still be cooling slowly (E. M. Cackett
et al. 2010, in preparation). The observed cooling timescales
were interpreted to imply a high thermal conductivity for the
crust, in agreement with more recent findings from the fitting
of theoretical models to the cooling curves (Shternin et al.
2007; Brown & Cumming 2009). In 2008, EXO 0748–676
entered quiescence after active accretion for over 24 yr. Swift
and Chandra observations of the source in the first half of the
year since the end of the outburst indicate very slow initial
cooling (Degenaar et al. 2009). In contrast to KS 1731–260
and MXB 1659–29, EXO 0748–676 has shown a significant
non-thermal component in its spectra in addition to the thermal
component. Such a non-thermal component has been seen for
many quiescent NS-LMXBs. It is usually well fitted with a
simple power law of photon index 1–2 and typically dominates
the spectrum above a few keV (Campana et al. 1998a). A number
of quiescent NS sources have spectra which are completely
dominated by the power-law component and do not require a
thermal component, e.g., the millisecond X-ray pulsar SAX
J1808.4–3658 (Heinke et al. 2007) and the globular cluster
source EXO 1745–248 (Wijnands et al. 2005). The power-law
component is common among millisecond X-ray pulsars (see,
e.g., Campana et al. 2005), but its origin is poorly understood.
Suggested explanations include residual accretion, either onto
the NS surface or onto the magnetosphere, and a shock from a
pulsar wind (see, e.g., Campana et al. 1998a). We note that it has
also been argued that low-level spherical accretion onto an NS
surface can produce a spectrum with a thermal shape (Zampieri
et al. 1995).

1.1. XTE J1701–462

XTE J1701–462 (hereafter J1701) was discovered with the
All-Sky Monitor (ASM; Levine et al. 1996) on board the Rossi
X-Ray Timing Explorer (RXTE) on 2006 January 18 (Remillard
& Lin 2006), shortly after entering an outburst (see Figure 1).
Re-analysis of earlier ASM data further constrained the start of
the outburst to a date between 2005 December 27 and 2006
January 4 (Homan et al. 2007). During the !1.6-year-long
outburst the source became one of the most luminous NS-
LMXBs ever seen in the Galaxy, reaching a peak luminosity
of !1.5 LEdd, and it accreted at near-Eddington luminosities
throughout most of the outburst (Lin et al. 2009b). The source
entered quiescence in early 2007 August (see Section 2.6 for
a discussion of our definition of quiescence for this source).
During the outburst the source was monitored on an almost daily
basis with RXTE. Spectral and timing analysis of the early phase
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Figure 1. RXTE ASM light curve of XTE J1701–462 showing the 2006–2007
outburst and the subsequent quiescent period. Data points represent 1 day
averages. The upper row of vertical bars indicates the times of the ten Chandra
observations made after the end of the outburst; the lower row indicates the
times of the three XMM-Newton observations. No other observations of XTE
J1701–462 sensitive enough to detect the source have been made since the
outburst ended.

of the outburst is presented in Homan et al. (2007), and Lin et al.
(2009b) give a detailed spectral analysis of the entire period of
active accretion. In the early and most luminous phase of its
outburst, J1701 exhibited all spectral and timing characteristics
typical of a Z source, and is the only transient NS-LMXB ever
observed to do so. During the outburst the behavior of the source
evolved through all spectral subclasses of low-magnetic-field
NS-LMXBs (Hasinger & van der Klis 1989), starting as a Cyg-
like Z source, then smoothly evolving into a Sco-like Z source
(Kuulkers et al. 1997), and finally into an atoll source (first a
bright GX-like one and subsequently a weaker bursting one).
This evolution will be discussed in detail in an upcoming paper
(J. Homan et al. 2010, in preparation). The unique behavior of
the source in conjunction with the dense coverage by RXTE has
made it possible to address long-standing questions regarding
the role of mass accretion rate in causing these subclasses and the
spectral states within each subclass (Lin et al. 2009b). Toward
the end of the outburst J1701 exhibited three type I X-ray
bursts, the latter two of which showed clear photospheric radius
expansion. From these Lin et al. (2009a) derive a best-estimate
distance to the source of 8.8 ± 1.3 kpc, using an empirically
determined Eddington luminosity for radius expansion bursts
(Kuulkers et al. 2003).

J1701 provides a special test case for NS cooling. It accreted
for a shorter time than the three cooling transients with long-
duration outbursts mentioned above, but for a longer time than
regular transients. Moreover, the level at which it accreted is
higher than for any other NS transient observed. This source
therefore allows new parameter space in NS cooling to be
probed. The close monitoring of the source with RXTE also
makes it possible to get a good estimate for the total fluence
of the outburst. This gives information about the total mass
accreted and hence about the heat generated from crustal
heating, a crucial input parameter for theoretical models of
the cooling. Flux values derived from spectral fits to RXTE
data (spectra from 32 s time bins, with linear interpolation
between data points; see Figure 3 in Lin et al. 2009b) imply a
total bolometric energy output (corrected for absorption) during
the outburst of !1.0 × 1046 erg for an assumed distance of
8.8 kpc and system inclination of 70◦ (D. Lin 2009, private
communication; see Lin et al. 2009b for details on the spectral
fitting). This value is likely to be uncertain by a factor of !2–4
due to uncertainties in the distance and inclination of the system,

RXTE 
Fridriksson et al. (2010)

Accretion Outburst

X-ray luminosity during accretion

constrains the accretion rate.  
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KS 1731-260: High 
accretion 1988-2000

During accretion nuclear reactions release: ~ 2-4 MeV / nucleon
Sato (1974), Haensel & Zdunik (1990),  Brown, Bildsten Rutledge (1998)
Gupta et al (2007,2011).
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The energy is conducted to the core.  Warms up old neutron 
stars.  
A steady state is reached as neutrino losses from the core 
balance crustal heating.  



Measuring the Heat Capacity of the Core

CNS dT = dQ
Heat the star, allow it to relax, and observe the 
change in temperature: 

Cumming et al. (2016)
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Measuring the Heat Capacity of the Core

CNS dT = dQ
Heat the star, allow it to relax, and observe the 
change in temperature: 

duration  

of heating

When CNS = α T : 
↵

2
(T 2

f � T 2
i ) = �Q

CNS(Tf ) > 2
�Q

Tf
Lower limit:

�Q = Ḣ ⇥ tH � L⌫ ⇥ (tH + tobs)

heating 

rate

neutrino 

cooling rate

time of observation

(after heating ceases)

Cumming et al. (2016)



Constraining the Neutrino Emissivity and Heat Capacity 

Brown at al. (2018)

In systems with repeated 
accretion outbursts, we can 
infer the neutrino luminosity by 
estimating the net crustal heat 
deposition.    

If cooling is observed between 
accretion events, it would 
constrain the specific heat. A 
10% change in the core 
temperature on a 10 year time 
scale, would require that most 
fermions are gapped- either 
superfluid or superconducting. 

Rapid Cooling of MXB 1659-29 



Pairing in the core (typical density  )  nB ≃ 4 nsat

• In neutron matter, these interactions are modeled by the exchange of vector mesons   
• High sound speed requires strong repulsive interactions.   

Questions: 


1. Can fermions pair if their interactions are mediated by massive vector bosons?  
2. Can the pairing gap be related to the sound speed?   

Answers: 


1. Yes.  pairing is likely. 


2. In some scenarios.   

3P2

Pairing through the Kohn-Luttinger Mechanism:  



c2
s =

k2
F

3mm*
(1 + F0)

Large short-range repulsion due  heavy 
vector meson exchange naturally leads 
to pairing in the  channel. 


Interesting interplay between central 
and spin-orbit forces.  


The strength of the vector repulsion is 
related to the sound speed. 

3P2

Kumamoto & Reddy  (2024)

Induced Pairing in Neutron Matter 

An old subject, first studies by Fay 
and Lazer in 1968! 
see review by Gezerlis, Pethick and Schwenk arXiv:1406.6109 (2014) 



Summary & Conclusions 

• Mass and radius measurements can and will provide strong constraints on the sound 
speed in the neutron star core. 


• X-ray observations can provide valuable guidance but GW’s are needed to obtains 
stringent constraints.  


• We will need to observe and interpret thermal phenomena in accreting (and 
magnetized ) neutron stars to constrain low temperature properties.  


• There appears to some diversity in the cooling of neutron stars. A few old accreting 
neutron stars appear to be cooling rapidly.  


• Long term monitoring of these systems can constrain the specific heat of the core.  


• Screening of repulsive vector interactions provides a mechanism to pair fermions in 
the  channel.   3P2


