Finite-size scaling analysis of proton cumulants

Agnieszka Sorensen

w/ Paul Sorensen

arxiv:2405.10278

Main result

- proton number susceptibilities scale with the size of the system: use finite-size scaling
- use rapidity bin widths as the system size
- extract the location of the CP

Main result

- proton number susceptibilities scale with the size of the system: use finite-size scaling
- use rapidity bin widths as the system size
- extract the location of the CP

Agnieszka Sorensen

200 $\mu_{\rm B}/T=3$ $(\mu_B/T=2)$ 150 this work [MeV] 100 freezeout points [various sources] Η DSE/Lattice [Fischer et al., 2014] FRG [Fu et al., 2019] . Hippert et al, arXiv:2309.005 DSE/FRG [Gao, Pawlowski, 2020] 50 G. Basar, arXiv:2312.06952 DSE/FRG [Gao, Pawlowski, 2020] D.A. Clarke, et al. DSE/Lattice [Gunkel, Fischer, 2021] PoS LATTICE2023 (2024), 168 Lattice [Borsanyi et al., 2020] 0 100 200 300 500 600 700 400 $\mu_{\rm B}$ [MeV]

Christian Fischer's slides, CPOD 2024:

Introduction

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim |t|^{-\nu}$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m) \sim |m|^{-\nu_{c}}$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: X_{∞}

Agnieszka Sorensen

$$t \equiv \frac{T - T_c}{T_c}$$
$$m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m)$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}(x)$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system L

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim \tilde{t}_{\infty}(t,0) \sim (-t)^{\beta}$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}(x)$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system $L \Rightarrow X_L($

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

$$(t_L) \sim L^{\frac{\sigma}{\nu}}$$

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim \tilde{t}_{\infty}(t,0) \sim (-t)^{\beta}$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}(x)$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system $L \Rightarrow X_L($

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

(t) ~
$$|t|^{-\sigma} \sim [\xi_{\infty}(t)]^{\frac{\sigma}{\nu}}$$

$$(t_L) \sim L^{\frac{\sigma}{\nu}}$$
$$(t_L) = L^{\frac{\sigma}{\nu}} \phi(t, L) = L^{\frac{\sigma}{\nu}} \phi(tL^{\frac{1}{\nu}})$$

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim \tilde{t}_{\infty}(t,0) \sim (-t)^{\beta}$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}(x)$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system $L \Rightarrow X_L($

- $\Rightarrow X_L($
- $\Rightarrow X_L($

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

$$\begin{aligned} (t_L) &\sim L^{\frac{\sigma}{\nu}} \\ (t_L) &= L^{\frac{\sigma}{\nu}} \phi(t,L) = L^{\frac{\sigma}{\nu}} \phi(tL^{\frac{1}{\nu}}) \\ (t_L) L^{-\frac{\sigma}{\nu}} &= \phi(tL^{\frac{1}{\nu}}) \end{aligned}$$

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m)$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}(x)$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system L $\Rightarrow X_I($

- $\Rightarrow X_L$
- $\Rightarrow X_L(*$

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

$$(t_L) \sim L^{\frac{\sigma}{\nu}}$$

$$(t_L) = L^{\frac{\sigma}{\nu}} \phi(t, L) = L^{\frac{\sigma}{\nu}} \phi(tL^{\frac{1}{\nu}})$$

$$(t_L) L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

one can find CP by plotting

$X_{I}(t_{I})L$

Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat

$$L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

- However: changing SIZE is not always possible or doesn't probe the same system (bird flocks, heavy-ions)

$X_I(t_I)L$

Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat

However: changing SIZE is not always possible or doesn't probe the same system (bird flocks, heavy-ions)

Solution: study the dependence of X on the size of the *subsystem* that is considered

Agnieszka Sorensen

$$L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

D. Martin, T. Ribeiro, S. Cannas, et al., Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

- $X_I(t_I)L$
- Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat
- Solution: study the dependence of X on the size of the *subsystem* that is considered

$$\chi_{\infty}(t,0) \sim |t|^{-\gamma}$$
 $\qquad \qquad \frac{\chi_2}{\chi_1} = \frac{C_2}{C_1} \quad \Rightarrow \quad \chi_2 = \frac{C_2}{C_1}$

Agnieszka Sorensen

$$L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

However: changing SIZE is not always possible or doesn't probe the same system (bird flocks, heavy-ions)

D. Martin, T. Ribeiro, S. Cannas, et al., Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

$$\begin{aligned} \sum_{i=1}^{r} \chi_{1} & \Rightarrow & \chi_{2} = \frac{C_{2}}{C_{1}} \frac{n_{B}}{T^{3}} \\ \chi_{1} &= \frac{C_{1}}{VT^{3}} = \frac{n_{B}}{T^{3}} \end{aligned}$$

- $X_I(t_I)L$
- Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat
- Solution: study the dependence of X on the size of the *subsystem* that is considered

$$\chi_{\infty}(t,0) \sim |t|^{-\gamma}$$
 $\qquad \qquad \frac{\chi_2}{\chi_1} = \frac{C_2}{C_1} \quad \Rightarrow \quad \chi_2 = \frac{C_2}{C_1}$

Agnieszka Sorensen

$$L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

However: changing SIZE is not always possible or doesn't probe the same system (bird flocks, heavy-ions)

D. Martin, T. Ribeiro, S. Cannas, et al., Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

$$\begin{split} \frac{C_2}{C_1} \chi_1 & \Rightarrow \quad \chi_2 = \frac{C_2}{C_1} \frac{n_B}{T^3} \\ \chi_1 &= \frac{C_1}{VT^3} = \frac{n_B}{T^3} \end{split}$$

Does it work??

Tests in simulations

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper")
- simulation: box with periodic boundary conditions at chosen (n_B, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

z 1 at 0.0 fm/c, event 1, NT=200

x v z 1 at 200.0 fm/c. event 1. NT=200

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper")
- simulation: box with periodic boundary conditions at chosen (n_R, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

VDF EOS: relativistic polynomial w/ 2 phase transitions

AS and V. Koch, Phys. Rev. C 104, 3, 034904 (2021), arXiv:2011.06635

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper") • simulation: box with periodic boundary conditions at chosen (n_R, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

VDF EOS: relativistic polynomial w/ 2 phase transitions

AS and V. Koch, Phys. Rev. C 104, 3, 034904 (2021), arXiv:2011.06635

	♦		*
[MeV]	100	100	100
ıB [n0]	1.5	2.0	2.5
2/k1)inf	0.67	0.70	1.46

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper") • simulation: box with periodic boundary conditions at chosen (n_R, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

VDF EOS: relativistic polynomial w/ 2 phase transitions

AS and V. Koch, Phys. Rev. C 104, 3, 034904 (2021), arXiv:2011.06635

	•		*
[MeV]	100	100	100
ıB [n0]	1.5	2.0	2.5
2/k1)inf	0.67	0.70	1.46

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper") • simulation: box with periodic boundary conditions at chosen (n_R, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

VDF EOS: relativistic polynomial w/ 2 phase transitions

- framework: hadronic transport with a *known* EOS (calculate κ_2/κ_1 "on paper") • simulation: box with periodic boundary conditions at chosen (n_R, T)
- uniform initialization at t = 0, development of fluctuations in response to the EOS

VDF EOS: relativistic polynomial w/ 2 phase transitions

Agnieszka Sorensen

	•					
T [MeV]	100	100				
nB [n0]	1.5	2.0				
k2/k1	0.67	0.70	-			
2 1						

 $+\infty$ 100 50 25 10 5 2.5 1.0 0.5 0.1

 $L_{\rm box} = 24 \text{ fm}, t_{\rm end} = 50 \text{ fm}/c$

conservation:

Agnieszka Sorensen

correcting for effects of baryon number

V.A. Kuznietsov, O. Savchuk, M.I. Gorenstein, V. Koch, V. Vovchenko, Phys. Rev. C 105 no.4, 044903 (2022), arXiv:2201.08486

 $+\infty$ 100 50 25 10 5 2.5 1.0 0.5 0.1

 $L_{\rm box} = 24 \text{ fm}, t_{\rm end} = 50 \text{ fm}/c$

conservation:

small dependence on the microscopic scale

Agnieszka Sorensen

correcting for effects of baryon number

V.A. Kuznietsov, O. Savchuk, M.I. Gorenstein, V. Koch, V. Vovchenko, Phys. Rev. C 105 no.4, 044903 (2022), arXiv:2201.08486

 $+\infty$ 100 50 25 10 5 2.5 1.0 0.5 0.1

largest L

			*
T [MeV]	100	100	100
nB [n0]	1.5	2.0	2.5
k2/k1	0.67	0.70	1.46

x y z 1 at 0.0 fm/c, event 1, NT=200

x y z 1 at 200.0 fm/c, event 1, NT=200

largest L

			*
T [MeV]	100	100	100
nB [n0]	1.5	2.0	2.5
k2/k1	0.67	0.70	1.46

x y z 1 at 0.0 fm/c, event 1, NT=200

x y z 1 at 200.0 fm/c, event 1, NT=200

	•		*
T [MeV]	100	100	100
nB [n0]	1.5	2.0	2.5
k2/k1	0.67	0.70	1.46

x y z 1 at 0.0 fm/c, event 1, NT=200

x y z 1 at 200.0 fm/c, event 1, NT=200

	•		*
T [MeV]	100	100	100
nB [n0]	1.5	2.0	2.5
k2/k1	0.67	0.70	1.46

				*
	T [MeV]	100	100	100
_	nB [n0]	1.5	2.0	2.5
	k2/k1	0.67	0.70	1.46

Results using data from BES-I

Agnieszka Sorensen

Thermal model

$$\chi_2 = \frac{C_2}{T^3 V} \quad \Rightarrow \quad \chi_2(W, \mu_{\rm fo}) = \frac{C_2(W, \mu_{B, \rm fo})}{T_{\rm fo}^3 W dV_{\rm fo}/d}$$

- We use rapidity bin width W as the subsystem
- We used published thermal model fits for T_{fo} as
- We parameterize dV_{fo}/dy from several publicat For 2.4 GeV, $T_{fo}^3 V$ is highly uncertain, ranging f about 65 to 650
- Experiments can improve results by publishing $dV_{\rm fo}/dy$, $T_{\rm fo}$ and $\mu_{B,\rm fo}$ from thermal model fits for specific W

v	$\sqrt{s_{_{ m NN}}}$	$y_{ m beam}$	$\mu_{ m fo}$	$T_{ m fo}$	$dV_{ m fo}$
<i>.</i> .	(GeV)		(GeV)	(GeV)	(fm [*]
	2.4	0.73	0.776	0.050	1715
size	3.0	1.05	0.720	0.080	4850
	7.7	2.09	0.398	0.144	104^{2}
nd $\mu_{B, \text{fo}}$	11.5	2.50	0.287	0.149	104'
	14.5	2.73	0.264	0.152	1080
tions.	19.6	3.04	0.188	0.154	113'
from	27	3.36	0.144	0.155	1218
	39	3.73	0.103	0.156	134
	54.4	4.06	0.083	0.160	148'
	54.4	4.06	0.083	0.160	148

J. Adamczewski-Musch et al. (HADES), Phys. Rev. C 102, 024914 (2020) M. Abdallah et al. (STAR), Phys. Rev. C 104, 024902 (2021) M. Abdallah et al. (STAR), Phys. Rev. C 107, 024908 (2023) A. Andronic, P. Braun-Munzinger, J. Stachel, Acta Phys. Polon. B 40, 1005-1012 (2009) A. Motornenko et al., Phys. Lett. B 822, 136703 (2021) S. Chatterjee et al., Adv. High Energy Phys. 2015, 349013 (2015)

Susceptibility

$$\chi_{2}(W, \mu_{\rm fo}) = \frac{C_{2}(W, \mu_{B,\rm fo})}{T_{\rm fo}^{3} W dV_{\rm fo}/dy}$$

- Grey band shows uncertainty from freeze-out ambiguities for the 2.4 GeV data. Uncertainty precludes any conclusion about observing a maximum in χ_2
- Data do indicate a change in slope at higher μ_B and at small W:
 χ₂ decreases with increasing W for 7.7-54.4 GeV but changes slope at 2.4 GeV (3.0 GeV is ~flat)

Scaled susceptibility

$$\chi_2(W,m) = W^{\gamma/\nu} \Phi(mW^{1/\nu})$$
$$m = (\mu_B - \mu_{B,c})/\mu_{B,c}$$

- Good scaling for negative *m*
- Low energy points do not scale well
- Scaling function Φ is well described by a power law
- This scaling neglects variation of $t = (T T_c)/T_c$; not a bad approximation for 7.7 GeV and above, but worse for 2.4 and 3.0 GeV

$$\mu_{B,c} = 662 \pm 22 \text{ MeV}$$

Scaled susceptibility: excluding widest bins

- Our simulations showed that baryon number conservation may spoil the scaling for larger values of *W*
- Excluding W=0.8 and 1.0 reduces the $\mu_{B,c}$ (as was expected from simulations)
- The fraction of measured baryons to total baryons is likely well below 25% for all these points except the 2.4 and 3.0 GeV data (not in the fit)

$$\mu_{B,c} = 625 \pm 20 \text{ MeV}$$

Scaled susceptibility: μ_B/T fit

- To explore factoring in the temperature dependence used $(r r_c)/r_c$ where $r = \mu/T$
- From that, we extract $T_c = 140 \pm 13$ MeV

$$\mu_{B,c}/T_c = 4.45 \pm 0.12$$

Agnieszka Sorensen

Binder cumulants

K. Binder, Z. Phys. B 43, 119 (1981).

$$U_4 = -C_4 / (3C_2^2)$$

- Expectation: $U_4 = 0$ (Gaussian), 2/3 (bimodal), crosses at the critical point $U_4 \approx a_1 + a_2(\mu_B - \mu_{B,c})W^{1/\nu}$
- At low μ_B , U_4 follows Skellam with $U_4(W = 0.8) > U_4(W = 0.6) > U_4(W = 0.4)$
- At $\mu_B > 400$ MeV, the ordering appears to reverse
- Data are consistent with a critical point between μ_B of 400 and 800 MeV

Agnieszka Sorensen

Summary

- Simulations show that window-size analysis works: effects due to finite time, baryon number conservation can be controlled by considering less than ~25% of the total volume
- We observe finite-size scaling for χ_2 extracted from 7.7-54.4 GeV data: we obtain $\mu_R \approx 625 \pm 60$ MeV and $T_c = 140 \pm 13$ MeV
- We explored a variety of fit ansaetze: μ_B , μ_B/T , (μ_B , T), different critical exponents...

Summary

- Simulations show that window-size analysis works: effects due to finite time, baryon number conservation can be controlled by considering less than ~25% of the total volume
- We observe finite-size scaling for χ_2 extracted from 7.7-54.4 GeV data: we obtain $\mu_R \approx 625 \pm 60$ MeV and $T_c = 140 \pm 13$ MeV • We explored a variety of fit ansaetze: μ_R , μ_R/T , (μ_R , T), different critical exponents...

Thank you for your attention

Different critical exponents

• We explored a broad range of critical exponents including mean-field (1.0, 0.5)

>

- For each selected critical exponent pair, we find the temperature that minimizes the Chi-square
- Chi-square is shown in color and $\mu_{B,c}$ as text
- Most results are satisfactory Chi-square values so we do not interpret the Chi-square valley as necessarily providing the correct exponents

Agnieszka Sorensen

		CO	lor:	fit	χ^2	te	ext:	$\mu_{B,B}$	с (М	∕le∖	/)		
2	590	604	620	636	652	668	686	702	718	720	720	720	
	586	602	618	634	650	666	682	700	716	720	720	720	
	 584	600	614	632	648	664	680	698	714	720	720	720	
1.5	<u>5</u> 80	596	612	628	644	662	678	694	712	720	720	720	
	578	594	610	626	642	660	676	692	710	720	720	720	
	576	592	608	624	642	658	674	692	708	720	720	720	
1	574	590	606	622	638	656	672	690	706	720	720	720	
	_ 572	588	604	620	636	654	670	686	704	720	720	720	
о г	570	586	602	618	634	652	668	684	702	720	720	720	
0.5	568	584	600	616	632	650	666	682	700	718	720	720	
	- 566	582	598	614	630	648	664	680	698	716	720	720	
0	564	590	604	614	630	646 	664	680	698	714	720 	720	
	1		1.1	1.	2	1.3	1	.4	1.5	5	1.6		_

 $\boldsymbol{\gamma}$

Motivation for VDF studies: cumulants in molecular dynamics

Behavior near a critical point

- Critical point (CP): a single point in the phase diagram where char
- The endpoint of a 1st order phase transition

As systems approach the CP, latent heat decreases \Rightarrow it costs little energy for components of one phase to form a local "bubble" of the other phase \Rightarrow as CP is approached, correlation length ξ increases = large fluctuations (large bubbles) \Rightarrow critical opalescence phenomenon:

→ "bubbles" grow to sizes comparable with visible light wavelengths ($\xi \approx \lambda$) → light can be scattered and a translucent system becomes cloudy (like fog) ⇒ at CP, correlation length formally diverges; system experiences correlations of all sizes (proof: critical opalescence in methanol+cyclohexane persists at CP where $\xi \sim 1$ cm)

a single point in the phase diagram where change from an ordered to disordered phase occurs

