Impact of Lattice QCD Data at Large Isospin Density on Baryon-Rich QCD Matter

References: Y. Fujimoto, S. Reddy, PRD 109 (2024) (Selected for Editors' suggestion) [2310.09427] Y. Fujimoto, PRD109 (2024) [2312.11443]; in preparation [2405.????]

24 May, 2024 - CPOD 2024 @ LBNL

Yuki Fujimoto (University of Washington)

INSTITUTE for NUCLEAR THEORY

QCD equation of state at finite baryon density Freedman, McLerran (1978);

Saturation density: $n_0 = 0.16 \text{ fm}^{-3}$

Yuki Fujimoto (INT, U Washington)

Kurkela, Romatschke, Vuorinen, Paatelainen, Seppänen+(2009-)

QCD equation of state at finite baryon density

Saturation density: $n_0 = 0.16 \text{ fm}^{-3}$

Saturation density: $n_0 = 0.16 \text{ fm}^{-3}$

Exceptional case: QCD at finite *isospin* density Alford, Kapustin, Wilczek (1999); Son, Stephanov (2000); Kogut, Sinclair (2002-); Beane, Detmold, Savage et al. (NPLQCD) (2007-); Endrődi et al. (2014-)...

- Isospin chemical potential: $\mu_{\mu} = -\frac{1}{2}$ (conjugate to isospin density I_3) **NO sign problem** \rightarrow can be simulated on the lattice!
- Recent impact: EoS up to $n_I \sim 180 n_{sat}$ by lattice QCD

What can we learn from this data?

$$\frac{\mu_I}{2}$$
, $\mu_d = -\frac{\mu_I}{2}$... Fermi surface of $u \& \bar{d}$

1. Bounds on isospin symmetric EoS from QCD inequality Y. Fujimoto, S. Reddy, PRD109 (2024)

2. Comparison with weak-coupling results

Yuki Fujimoto (INT, U Washington)

<u>Y. Fujimoto</u>, PRD109 (2024); <u>Y. Fujimoto</u>, in preparation

- QCD_I: QCD at finite μ_I (and zero μ_B) - QCD_B: QCD at finite μ_B (and zero μ_I)

1. Bounds on isospin symmetric EoS from QCD inequality Y. Fujimoto, S. Reddy, PRD109 (2024)

2. Comparison with weak-coupling results

Yuki Fujimoto (INT, U Washington)

<u>Y. Fujimoto</u>, PRD109 (2024); <u>Y. Fujimoto</u>, in preparation

Inequality among observables from path integrals Weingarten (1983); Witten (1983) e.g. earlier application to QCD_I: constraint on the QCD critical point location in large N_c Hidaka, Yamamoto (2011)

Inequality considered here:

Yuki Fujimoto (INT, U Washington)

OCD inequality

QCD inequality for pressure $P \propto \log Z$: $P_B(\mu_B) \le P_I(\mu_I = \frac{2}{N_c}\mu_B)$ Pressure of dense QCD_I matter (what we already know from lattice QCD)

Cohen (2003); <u>Fujimoto</u>, Reddy (2023); see also: Moore, Gorda (2023)

OCD inequality: derivation Cohen (2003); <u>Fujimoto</u>, Reddy (2023); see also: Moore, Gorda (2023) - Dirac operator: $\mathscr{D}(\mu) \equiv \gamma^{\mu} D_{\mu} + m - \mu \gamma^{0}$, property: det $\mathscr{D}(-\mu) = [\det \mathscr{D}(\mu)]^{*}$

$$\operatorname{QCD}_{I}: Z_{I}(\mu_{I}) = \int [dA] \det \mathfrak{D}(\frac{\mu_{I}}{2}) \det \mathfrak{D}(-\frac{\mu_{I}}{2}) e^{-S_{G}} = \int [dA] \left| \det \mathfrak{D}(\frac{\mu_{I}}{2}) \right|^{2} e^{-S_{G}}$$

$$\operatorname{u} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{quark} \operatorname{quark} \operatorname{quark} \operatorname{d} \operatorname{quark} \operatorname{qu$$

- From the relation Re
$$z^2 \le |z^2| = |z|^2$$
:

$$Z_B(\mu_B) \le \int [dA] \left| \det \mathcal{D}(\frac{\mu_B}{N_c}) \right|^2 e^{-S_G} = Z_I(\mu_I = \frac{2}{N_c}\mu_B)$$

Direct use of QCD inequality

Yuki Fujimoto (INT, U Washington)

Lattice data: Abbott et al. (2023); Fujimoto, Reddy (2023)

Lattice data: upper bound P_I $P_B(\mu_B) \le P_I(\mu_I = \frac{2}{N_c}\mu_B)$ $v_s^2 = 0.3$ $v_s^2 = 1.0$ $-v_s^2 = 0.1$ Constant sound speed EoS: $P(\varepsilon) \propto v_s^2 \varepsilon$ $-- v_s^2 = 0.3$ $v_{s}^{2} = 1.0$ Soft EoS (smaller v_s^2) LQCD A LQCD B is excluded 3500

11 /18

Robust bounds on $P(\varepsilon)$

 $\varepsilon = -P + \mu_R n_R$

Yuki Fujimoto (INT, U Washington)

Fujimoto, Reddy (2023)

1. Bounds on isospin symmetric EoS from QCD inequality Y. Fujimoto, S. Reddy, PRD109 (2024)

2. Comparison with weak-coupling results Y. Fujim Y. Fu

Yuki Fujimoto (INT, U Washington)

<u>Y. Fujimoto</u>, PRD109 (2024); <u>Y. Fujimoto</u>, in preparation

Weak-coupling results in high-density QCD

QCD EoS in weak-coupling α_s expansion:

$$P_{\rm QCD}(\mu) = \frac{3\mu^4}{4\pi^2} \left(1 - a_1 \frac{\alpha_s}{\pi} - a_2 \frac{\alpha_s^2}{\pi^2} \right) + \frac{3\mu^2 \Delta^2}{2\pi^2} \left(1 + c_1 \sqrt{\frac{\alpha_s}{\pi}} \right)$$

Pros and cons for the applicability at low μ **: Pros** $(\mu_{\text{limit}} \sim 0.8 \text{ GeV})$ **Cons** \checkmark : (e.g. $\mu_{\text{limit}} \sim 10^5 \text{ GeV}$) [Rajagopal,Shuster (2000)] - Convergence is good - Standard pQCD (e.g. in high-energy QCD) - Folklore — only applicable at very large μ is used down to $\mu \sim 1~{
m GeV}$ - Coupling constant is large: - Derivation of the gap eqn. for Δ is valid

$$\alpha_s = g^2/4\pi \sim 0.1 \rightarrow g \sim 1$$

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Kurkela et al. (2009-); Fujimoto (2023) Review: Alford, Rajagopal, Schafer, Schmitt (2008);

where

$$\ln\left(\frac{\Delta}{\mu}\right) = -b_{-1}\left(\frac{\alpha_s}{\pi}\right)^{-1/2} - k$$
$$(N_c = 3, N_f = 3)$$

as long as $\Delta \ll m_{\rm D} \ll \mu$

Weak-coupling formula is **universal** for QCD_B and QCD_I up to $\mathcal{O}(\alpha_s^2)$ \rightarrow Lattice QCD₁ can be used as a benchmark

\mathcal{D}_0

Uncertainty in weak-coupling results: quantified by varying the renormalization scale Λ by a factor 2 around its typical scale $\bar{\Lambda} = 2\mu$

Plot of weak-coupling Cooper pairing gap:

Yuki Fujimoto (INT, U Washington)

$\Delta_{\rm CFL} \sim 2-3$ MeV at $\mu = 800$ MeV

cf. Kurkela, Rajagopal, Steinhorst (2024)

- A negligibly small contribution to bulk thermodynamics

- Comparable to the stress by strange quark mass: $\Delta_{\rm CFL} \sim m_{\rm s}^2/4\mu$ → CFL may not be the ground state even at $\mu_R = 2.4 \text{ GeV}$

Summary

QCD inequality: Robust constraints on the symmetric nuclear matter EoS from lattice QCD & saturation property

Weak-coupling results: Matches well with lattice QCD₁

- Empirical evidence for the validity down to $\mu \simeq 800 {
 m ~MeV}$
- Color-superconducting gap around $\mu \sim 800$ MeV:
 - * negligible contribution in EoS
 - * CFL phase may not be the ground state
- Crosscheck with lattice-QCD can be provided in $N_c = 2$
- Impacts the neutron-star EoS; excludes some stiff EoSs

QCD at finite μ_I : a clean lab for QCD at finite μ_R ; lattice simulation feasible

Yuki Fujimoto (INT, U Washington)

Supplemental materials

QCD at finite isospin density

- Phase structure:

Son, Stephanov (2000)

Yuki Fujimoto (INT, U Washington)

$\begin{array}{ccc} & \text{BCS} & \text{Cooper pairing} \\ 0 & \langle \bar{d}\gamma^5 u \rangle \neq 0 \\ & & \mu_I \end{array}$

Brandt, Endrődi, Schmalzbauer (2018)

OCD inequality: multi-flavor/isospin imbalanced extension?

$$Z(\{\mu_f\}) = \int [dA] \prod_f \det \mathscr{D}(\mu_f) e^{-S_G}$$

$$\leq Z_{PQ}(\{\mu_f\}) = \int [dA] \prod_f \left| \det \mathscr{D}(\mu_f) \right| e^{-S_G} \quad \det \mathscr{D} = |\det \mathscr{D}|$$
Phase quenching

Challenges:

- Only works for symmetric matter: beta-equilibrium/charge neutrality cannot be implemented in the rigorous way
- Computationally demanding: efficient algorithm only for canonical ensemble $\mu_I \neq 0$ case, absent in general case?

Yuki Fujimoto (INT, U Washington)

(0000). MA

Komoltsev, Kurkela (2021); Fujimoto, Reddy (2023)

Yuki Fujimoto (INT, U Washington)

Bounds on $n_R(\mu_R)$ **Properties** $n_R(\mu_R)$ **must satisfy**: Stability: $\frac{d^2 P}{d\mu_B^2} \ge 0 \implies \frac{dn_B}{d\mu_B} \ge 0$ ② Causality $v_s^2 \le 1$: $v_s^2 = \frac{n_B}{\mu_B} \frac{d\mu_B}{dn_B} \le 1 \implies \frac{dn_B}{d\mu_B} \ge \frac{n_B}{\mu_B}$ QCD inequality on the integral: $(\mathbf{3})$ $d\mu' n_B(\mu') \leq P_I(\mu_I = \frac{2}{N_c}\mu_B)$ $J \mu_{sat}$ 3000 Lower bound of the integral must be specified fix it to the empirical saturation property

Is the gap Δ the only correction?

 $P = a_4 \mu$

- a_{4} : Ideal gas behavior + pQCD correction (Dominant)
- a_2 : Gap correction $a_2 \propto \Delta$ Quark mass $a_2 \propto -m_1^2$ Temperature $a_2 \propto T^2$ (small, ~1%)
- B: Bag constant, typically E Instantons, suppressed

Shuryak; Kallman; Abrikosov; de Carvalho; Chemtob; Baluni (late 70s - early 80s)

Yuki Fujimoto (INT, U Washington)

Alford, Braby, Paris, Reddy (2004)

$$a^4 + a_2 \mu^2 - B$$

$$\Delta^2$$
 (large, ~20-200%),
 p_f^2 (small, ~1%)

$$B^{1/4} \simeq 200 \text{ MeV} \text{ (small, ~0.5\%)}$$

H by $\frac{m_f}{\Lambda_{\text{OCD}}} \sim 10^{-3}$

"Uncertainty" in pQCD

$$P_{\rm pQCD}(\mu;\bar{\Lambda}) = \frac{3\mu^4}{4\pi^2} \left[1 - 2\frac{\alpha_s(\bar{\Lambda})}{\pi} - \left(2\ln\frac{\alpha_s(\bar{\Lambda})}{\pi} + \frac{29}{6}\ln\frac{\bar{\Lambda}^2}{(2\mu)^2} + 17.39 \right) \left(\frac{\alpha_s(\bar{\Lambda})}{\pi} \right)^2 + \mathcal{O}(\alpha_s^3) \right]$$

- $\bar{\Lambda}$: renormalization scale

- "Uncertainty" quantified by varying by a factor 2 around typical scale $ar{\Lambda}=2\mu$ i.e. $X \in [1/2, 2]$ with $X \equiv \overline{\Lambda}/(2\mu)$... ad hoc procedure, purely based on historical practice \rightarrow size of uncertainty does not mean any meaning

Fraga, Pisarski, Schaffner-Bielich (2001)

... only ambiguity in pQCD from perturbative series truncation

Prescription for Λ **determination** Fujimoto, in preparation

Yuki Fujimoto (INT, U Washington)

New prescription: Matching Λ to lattice QCD_I uncertainty $X \in [0.64, 0.95]$

> Conventional choice for Λ $X = \bar{\Lambda}/2\mu \in [1/2, 2]$

 $P_{pQCD} + \delta P$ (Canonical scale setting: $X \in [0.5, 2]$) $P_{pQCD} + \delta P$ (Fit w/ lattice QCD: $X \in [0.65, 0.94]$) 1200 1400 1600 Quark chemical potential μ [MeV]

