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Given the e.o.s. as truncated Taylor series around 𝜇=0, what can 
we say about the critical e.o.s ?

[see talk by 
Kahangirwe]



•The equation of state has complex singularities
•Zeroes of partition function             
•Coalesce into branch cuts in thermodynamic limit
•Pinch the real axis at a second order transition
•Closest singularity to origin (“extended analyticity conjecture”)

𝒵(ζ) (ζ = eμ/T : fugacity)

Lee-Yang edge singularities
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 [Fonseca, Zamolodchikov ’02,  An, Mesterházy, Stephanov ’17 ]

[Stephanov, 0603014] 

https://arxiv.org/abs/hep-lat/0603014


Lee Yang edge singularity
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(w := hr−βδ)• The scaling e.o.s, fs(w), has singularities at  w = ± iwLY

• The e.o.s. near the LY singularity: M(w) ∼ (w ± iwLY)σLY, (M : magnetization)

[Fisher, ’74;  An, Stephanov, Mesterházy ’16; Connelly, Johnson, Mukherjee, Skokov ‘20]

σLY,d=3 ≈ 0.1, σLY,d=6 = 1/2 (mean field)

μLY(T ) ≈ μc −
hT

hμ
(T − Tc) ± iwLY

(det 𝕄)βδ

hβδ+1
μ

(T − Tc)βδ

slope of the 
crossover line

         det 𝕄 ∝ (tan α2 − tan α1)(tan α1)−1

relative angle 
between r, h axes

see
[Pradeep, Stephanov ’19]

T=Tc

μ2 T>Tc

[Stephanov ’06]



When life gives you Taylor series…
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χ(μ2) =
N

∑
n=0

c2nμ2nTaylor series: P[N/2,N/2] f(μ2) =
PN/2(μ2)
QN/2(μ2)

Padé approximant 
(diagonal)

Singularity of the function poles/zeroes of Padé

Problem: Padé is fairly good away from 
the singularity but fails 

badly near a singularity/ branch cut 🤷 

[Stahl’ 97, Costin Dunne ’20]

★

★
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Conformal Maps
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Solution: Do Padé after a conformal map

•Captures the singular behavior, no unphysical poles along real axis
•Significantly better approximation than Padé
•Can go beyond the radius of convergence, even to different Riemann sheets!

Conformal
map

μ2 ζ

Do Padé
 here

Pχ(T, ϕ(ζ)) =
p̃0(T ) + p̃1(T )ζ + … + p̃N/2(T )ζN

q̃0(T ) + q̃1(T )ζ + … + q̃N/2(T )ζN
ζ=ϕ−1(μ2)

“conformal Padé” 



Conformal Maps
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•conformal Padé does not introduce 
unphysical poles on the real axis!

• captures  the e.o.s. beyond the 
radius of convergence-5

0

5
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Taylor coefficients for QCD (HotQCD)
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Taylor coefficients from Hot QCD collaboration up to 
[Bollweg et al. PRD 105 (2022) 7, 074511]

μ8
B
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FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].
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Conformal Pade Algorithm 
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• Sample Taylor coefficients from a Gaussian ensemble
• Estimate singularity from Pade as an input for conformal map
• Refine the estimate via conformal Pade
• Use the refined value in conformal map
• Repeat ζ⏌

two-cut map
T=135. MeV

ζ⏌

uniformizing map
T=135. MeV

Consistency check:
Estimates of the 

singularities approach 
the edge of the unit 

disk!



Lee Yang Trajectory
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fits:
ReμLY(T ) = a(T − TC)2 + b(T − TC) + c

ImμLY(T ) = cwc(T − TC)βδ

βδ ≈ 1.5631 (3d Ising)

[Simmons-Duffin, 1502.02033]
from conformal bootstrap

μLY(T ) ≈ + iwc
rβδ
μ

hμ ( rT

rμ
−

hT

hμ )
βδ

(T − Tc)βδμc −
hT

hμ
(T − Tc)

wc = |zc |−βδ ≈ 0.246

[Connelly et al, 2006.12541]
from functional RG

consistent with the HotQCD results
 [Bollweg et al. 2202.09184]



Estimations of QCD critical point 
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μC

TC

TC

TC ∼ 90 MeV μC ∼ 600 MeV

2-cut 
conf. Padé

TC = 100 MeV μC = 557 MeV
α1 = 8.69∘ c = 2.65

Padé
TC = 108 MeV μC = 437 MeV
α1 = 4.55∘ c = 3.35

unif. Padé
TC = 97 MeV μC = 579 MeV
α1 = 9.40∘ c = 2.22

 Bielefeld-Parma 

Functional RG

Dyson-Schwinger:

TC ∼ 107 MeV μC ∼ 635 MeV

TC ∼ 117 MeV μC ∼ 600 MeV
[Gunkel, Fischer 21. PRD 104 054022]

[Fu, Pawlowski, Rennecke ’20 PRD 101 054032]

[Di Renzo, Clarke, Dimopoulos, Goswami, Schmidt  ’23 Lattice 23]

Tc :∼ ± 20MeV, μc :∼ ± 200MeV

1 sigma uncertainty:

[see talks by Schmidt, Fisher, Noronha] Holography: TC ∼ 104 MeV μC ∼ 590 MeV
[Hippel et al 2309.00579 ]



Taylor coefficients for QCD (Wuppertal—Budapest)
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Taylor coefficients from Wuppertal-Budapest  collaboration
[Borsanyi et al. JHEP 10(2018) 205]  



Estimations for QCD critical point from WP data
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Iteration:

Padé

uni. Padé
(HotQCD)



Estimations for QCD critical point from WP data
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uniformizing map

two-cut map

Padé

uniformizing (HotQCD)
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1 sigma uncertainty TC:  MeV±25

statistical uncertainties are too large 
to estimate  or the slope μC
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A parade of singularities
A cartoon for Lee-Yang trajectory for QCD …

−π2

μ2

T2

μLY /T ≈ ± a(TRW − T )βδ ± iπ

μ2
LY /T2 ≈ a + b(T0 − T ) ± ic

μLY /T ≈ μc − a(T − Tc) ± ic(T − Tc)βδ

μ2
c /T2

c

“Z2 scaling”

“O(4) scaling”

“Roberge-Weiss scaling”
(also Z2)

??? ???



Conclusions and Outlook
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• Combined with conformal maps, Padé approximants provide a 
powerful tool to estimate  ,  from a truncated Taylor series

• It is encouraging that these estimates agree with other methods

•The extrapolation of  depends sensitively on the fit for  and has 
a large uncertainty

•Lower T data would significantly improve the situation 

• Wuppertal-Budapest data has different results for the higher 
cumulants compared to HotQCD, yet Im LY seems a consistent trend 
with the existence of a critical point around T ~ 100 MeV

•Role of other singularities (O(4) and Roberge-Weiss) need to be 
understood better for a complete picture

Tc μc

μc ReμLY
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EXTRAS



Lee-Yang trajectory
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μLY(T ) ≈ +

•Find               from poles of the conformal-Padé (GN model)μ2
LY(T )

wLY =
2

3 3

fi fi

•Extract            crossover slope,      ,  and   μc, Tc,
hT

hμ

r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

iwLY
r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

(T − Tc)3/2μc −
hT

hμ
(T − Tc)
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-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

T

Im
μ L
Y
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)
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exact

conf. Padé (N=21)
conf. Padé (N=11)
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T

R
e
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Ising parameters
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wLY =
2

3 3

μLY(T ) ≈ + iwLY
r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

(T − Tc)3/2μc −
hT

hμ
(T − Tc)

exact 0.192 0.717 0.249 4.684

conf. Padé (N=21) 0.195 0.716 0.248 4.323

conf. Padé (N=11) 0.185 0.707 0.225 3.666

cμc hT /hμTc



When life gives you Taylor series…

21

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

0.30

n

|μLY2|
|cn+1 /cn |

|cn -1/n

Padé

exact

Random Matrix Model

[GB, Dunne, Yin, arXiv: 2112.14269 ]



When life gives you Taylor series…
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e.g. f(z) =
1
2 ( 1

z − zc
+

1
z − z*c )

exact

Taylor

Padé
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Spurious poles

Spurious poles are unavoidable in Padé when there are conjugate pair of singularities…



Conformal Maps
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Conformal
map

μ2 ζ

Solution: Do Padé after a conformal map
• Captures the singular behavior, no unphysical poles along real axis
• Significantly better approximation than Padé

Do Padé
 here

Pχ(T, ϕ(ζ)) =
p̃0(T ) + p̃1(T )ζ + … + p̃N/2(T )ζN

q̃0(T ) + q̃1(T )ζ + … + q̃N/2(T )ζN
ζ=ϕ−1(μ2)

“conformal Padé” 

ϕ(ζ) = ( θ
π )

θ/π

(1 −
θ
π )

1−θ/π 4μ2
LYζ

(1 + ζ)2 ( 1 + ζ
1 − ζ )

2θ/π



Uniformization Map : crossing the branch cut
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w plane

high T sheet

w plane

low T sheet

(h>0)

Moving within unit circle
(smooth) Jumping through sheets



Uniformization Map : crossing the branch cut
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Ising model: w = F(z)w = hr−βδ
F(z) = z + z3 (mean field)

w w

high T sheet
r>0

low T sheet
r<0, h>0

z = Mr−β

 M ~ Im z 

h ~ -Im w

 M ~ Re z 

h ~ Re w

z(w) = w − w3 + 3w5 − 12w7 + …
high T expansion

High Temperature (T>Tc) Low Temperature (T<Tc)



Uniformization: crossing the branch cut
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Uniformizing (20 terms)

z1(exact)
z2 (exact)
z3(exact)

-20 -10 0 10 20
-3

-2

-1

0

1

2

3

-Im w

Im
z

Low T

Reconstructed from 
the high T expansion! 



Uniformization: crossing the branch cut
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w → w(τ) = i(−1 + 2λ(τ))

w plane

τ(ζ) = i ( 1 + iζ
1 − iζ )

high T sheet
r>0

λ(τ) =
θ4

2(τ)
θ4

3(τ)
(elliptic modular function) θ2(τ) =

∞

∑
n=1

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=1

e2πiτn2

ζ



Uniformization: crossing the branch cut
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w plane

low T sheet
r<0

ζ

Low T sheet = Schwartz reflection of the high T sheet 
(modular transformation)



Uniformization
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w(τ) = i(−1 + 2λ(τ))

λ(τ) =
θ4

2(τ)
θ4

3(τ)
θ2(τ) =

∞

∑
n=−∞

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=−∞

e2πiτn2

w = F(z) = z + z3 (mean field)

z1(w) = −
2i

3 [ 2F1 ( 1
3

, −
1
3

,
1
2

;
1
2

(1 − iw)) − c.c.]
z2(w) =

2i

3
2F1 ( 1

3
, −

1
3

,
1
2

;
1
2

(1 − iw))
“uniformization”

[Bateman, Higher Transcendal Functions I]
* w → 2/(3 3)w

z(τ) : single valued



Uniformization
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https://people.math.osu.edu/costin.9/classes.html
Interactive realization:

Smooth in 
      planeτ

Jumping sheets 
in w plane

https://people.math.osu.edu/costin.9/classes.html


Uniformization: higher Riemann sheets
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T<Tc
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Im
μ L
Y
/T

μ2
LY

T2

μLY

T

O(4) scaling

Z2 scaling

r ∝
T − T0

T0
− κ2

μ2

T2
, h ∝ ml /ms

hr−βδ = ± iwLY

μ2
LY

T2
= a + b(T − T0) ± i(constant)

“O(4) scaling”

A parade of singularities

Gross-Neveu

chiral
limit [Ejiri et al 0909.5122]


