Lee-Yang singularities, series expansions and the critical point

Gökçe Başar

University of North Carolina, Chapel Hill

CPOD 24, Lawrence Berkeley Lab, May 20-24, 2024

Based on: GB, <u>2312.06952</u> GB, PRL 127 (2021) 17, 171603 GB, G. Dunne, Z. Yin PRD 105 (2022) 10, 105002

Motivations

EXECUTE
r

$$\binom{r}{h} = \binom{r_T}{h_T} \quad \binom{r}{\mu} \begin{pmatrix} T - T_c \\ \mu - \mu_c \end{pmatrix} := M \begin{pmatrix} T - T_c \\ \mu - \mu_c \end{pmatrix}$$
 [see talk by Kahangirwe]

Sector
See talk by Kahangirwe]
See talk by Kahangirwe]
See talk by Kahangirwe]
See talk by Kahan

Given the e.o.s. as truncated Taylor series around μ =0, what can we say about *the critical e.o.s* ?

Lee-Yang edge singularities

- The equation of state has complex singularities [Lee-Yang, 52']
- Zeroes of partition function $\mathscr{Z}(\zeta)$ ($\zeta = e^{\mu/T}$: fugacity)
- Coalesce into branch cuts in thermodynamic limit
- Pinch the real axis at a second order transition
- Closest singularity to origin ("extended analyticity conjecture")

[Fonseca, Zamolodchikov '02, An, Mesterházy, Stephanov '17]

[Stephanov, 0603014]

Lee Yang edge singularity

• The scaling e.o.s, $f_s(w)$, has singularities at $w = \pm i w_{LY}$ ($w := hr^{-\beta\delta}$)

• The e.o.s. near the LY singularity: $M(w) \sim (w \pm iw_{LY})^{\sigma_{LY}}$, (*M* : magnetization) $\sigma_{LY,d=3} \approx 0.1$, $\sigma_{LY,d=6} = 1/2$ (mean field)

[Fisher, '74; An, Stephanov, Mesterházy '16; Connelly, Johnson, Mukherjee, Skokov '20]

When life gives you Taylor series...

6

Taylor series:
$$\chi(\mu^2) = \sum_{n=0}^{N} c_{2n} \mu^{2n}$$

Singularity of the function

$$P_{[N/2,N/2]}f(\mu^2) = \frac{P_{N/2}(\mu^2)}{Q_{N/2}(\mu^2)}$$

poles/zeroes of Padé

e.g. GN model

Problem: Padé is fairly good away from the singularity but fails badly near a singularity / branch cut

[Stahl' 97, Costin Dunne '20]

Solution: Do Padé after a conformal map

- Captures the singular behavior, no unphysical poles along real axis
- Significantly better approximation than Padé
- Can go beyond the radius of convergence, even to different Riemann sheets!

Conformal Maps

Test case: GN model

- conformal Padé does not introduce unphysical poles on the real axis!
- captures the e.o.s. beyond the radius of convergence

Taylor coefficients for QCD (HotQCD)

Taylor coefficients from Hot QCD collaboration up to μ_B^8 [Bollweg et al. PRD 105 (2022) 7, 074511]

Conformal Pade Algorithm

- Sample Taylor coefficients from a Gaussian ensemble
- Estimate singularity from Pade as an input for conformal map
- Refine the estimate via conformal Pade
- Use the refined value in conformal map

•

Lee Yang Trajectory

fits: $\operatorname{Re}_{\mu_{LY}}(T) = a(T - T_{C})^{2} + b(T - T_{C}) + c$ $\operatorname{Im}\mu_{IY}(T) = cw_c(T - T_C)^{\beta\delta}$

> $\beta \delta \approx 1.5631$ (3d Ising) from conformal bootstrap [Simmons-Duffin, 1502.02033]

$$w_c = |z_c|^{-\beta\delta} \approx 0.246$$

from functional RG [Connelly et al, 2006.12541]

consistent with the HotQCD results [Bollweg et al. 2202.09184]

Estimations of QCD critical point

12

[see talks by	Schmidt, Fisher, Noronh	.a]
---------------	-------------------------	-----

unif Padé	$T_C = 97 \mathrm{N}$	fev $\mu_C =$	579 MeV
<i>my</i> . 1 uue	$\alpha_1 = 9.40$	° $c = 2.22$	2
2-cut	$T_{C} = 100$	MeV μ_C =	= 557 MeV
conf. Padé	$\alpha_1 = 8.69$	° $c = 2.65$	5
Padé	$T_C = 1081$ $\alpha_1 = 4.55^\circ$	MeV $\mu_C = c = 3.35$	= 437 MeV
	1 sigma	uncertainty:	
T_c :	$\sim \pm 20 \mathrm{M}eV$	$\mu_c :\sim \pm 20$	$00 \mathrm{M}eV$
Bielefelo [Di Re	d-Parma enzo, Clarke, Dimoj	T _C ~ 90 MeV ooulos, Goswami, Sc	$\mu_C \sim 600 \mathrm{MeV}$ shmidt '23 Lattice 23]
Functio	nal RG	$T_C \sim 107 \mathrm{MeV}$	$\mu_C \sim 635 \mathrm{MeV}$
[Fu	, Pawlowski, Renne	ecke '20 PRD 101 05	54032]
Dyson-So	chwinger: 7	$T_C \sim 117 \mathrm{MeV}$	$\mu_C \sim 600 \mathrm{MeV}$
	[Gunkel, Fischer 2	1. PRD 104 054022]	
Holo	graphy:	$T_C \sim 104 \mathrm{MeV}$	$\mu_C \sim 590 \mathrm{MeV}$

[Hippel et al 2309.00579]

Taylor coefficients for QCD (Wuppertal-Budapest)

Taylor coefficients from Wuppertal-Budapest collaboration [Borsanyi et al. JHEP 10(2018) 205]

Estimations for QCD critical point from WP data

Iteration:

Estimations for QCD critical point from WP data

	unif. Padé	2-cut Padé	Padé
T_C (MeV) :	90	91	98
<i>c</i> :	2.7	2.9	3.4

1 sigma uncertainty T_C : ±25 MeV

statistical uncertainties are too large to estimate μ_C or the slope

A parade of singularities

A cartoon for Lee-Yang trajectory for QCD ...

Conclusions and Outlook

- Combined with conformal maps, Padé approximants provide a powerful tool to estimate T_c , μ_c from a truncated Taylor series
- It is encouraging that these estimates agree with other methods
- The extrapolation of μ_c depends sensitively on the fit for $Re\mu_{LY}$ and has a large uncertainty
- Lower *T* data would significantly improve the situation
- Wuppertal-Budapest data has different results for the higher cumulants compared to HotQCD, yet Im LY seems a consistent trend with the existence of a critical point around T ~ 100 MeV
- Role of other singularities (O(4) and Roberge-Weiss) need to be understood better for a complete picture

Lee-Yang trajectory

• Find $\mu_{LY}^2(T)$ from poles of the conformal-Padé (GN model)

Ising parameters

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_{\mu}}(T - T_c) + iw_{LY} \frac{r_{\mu}^{3/2}}{h_{\mu}} \left(\frac{r_T}{r_{\mu}} - \frac{h_T}{h_{\mu}}\right)^{3/2} (T - T_c)^{3/2} \qquad w_{LY} = \frac{2}{3\sqrt{3}}$$

	T_c	μ_c	h_T/h_μ	С
exact	0.192	0.717	0.249	4.684
conf. Padé (N=21)	0.195	0.716	0.248	4.323
conf. Padé (N=11)	0.185	0.707	0.225	3.666

When life gives you Taylor series...

Random Matrix Model

[GB, Dunne, Yin, arXiv: 2112.14269]

When life gives you Taylor series...

Spurious poles are unavoidable in Padé when there are conjugate pair of singularities...

Solution: Do Padé after a conformal map

- Captures the singular behavior, no unphysical poles along real axis
- Significantly better approximation than Padé

Uniformization Map : crossing the branch cut

Moving within unit circle (smooth)

Jumping through sheets

Uniformization Map : crossing the branch cut

 $w = hr^{-\beta\delta}$ $z = Mr^{-\beta}$ Ising model: w = F(z) $F(z) = z + z^3$ (mean field)

High Temperature (T>T_c)

Low Temperature (T<T_c)

Uniformization: crossing the branch cut

Low T

Uniformization: crossing the branch cut

Uniformization: crossing the branch cut

low T sheet

r<0

Low T sheet = Schwartz reflection of the high T sheet (modular transformation)

$w = F(z) = z + z^3$ (mean field)

$$z_1(w) = -\frac{2i}{\sqrt{3}} \left[{}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right) - \text{c.c.} \right]$$

$$z_2(w) = \frac{2i}{\sqrt{3}} {}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right)$$

$$\lambda(\tau) = \frac{\theta_2^4(\tau)}{\theta_3^4(\tau)} \quad \theta_2(\tau) = \sum_{n=-\infty}^{\infty} e^{2\pi i \tau (n+1/2)^2}, \quad \theta_3(\tau) = \sum_{n=-\infty}^{\infty} e^{2\pi i \tau n^2}$$

 $w(\tau) = i(-1 + 2\lambda(\tau))$

 $z(\tau)$: single valued

"uniformization"

[Bateman, Higher Transcendal Functions I]

* $w \rightarrow 2/(3\sqrt{3})w$

in *w* plane

*

Interactive realization: <u>https://people.math.osu.edu/costin.9/classes.html</u>

Uniformization: higher Riemann sheets

A parade of singularities

"O(4) scaling"

$$r \propto \frac{T - T_0}{T_0} - \kappa_2 \frac{\mu^2}{T^2}, \quad h \propto m_l/m_s$$

[Ejiri et al 0909.5122]

$$hr^{-\beta\delta} = \pm iw_{LY}$$

$$\frac{\mu_{LY}^2}{T^2} = a + b(T - T_0) \pm i(\text{constant})$$