Measurements of negatively charged hadron intermittency in central Xe+La at 150A GeV/c by NA61/SHINE at CERN SPS

Valeria Reyna

Jan Kochanowski University

21/05/2024

NCN Grant No. 2020/39/O/ST2/00277

Outline

In our previous talk, Tobiasz introduced:

- Intermittency of protons in central Ar+Sc collisions, the results were presented using cumulative transverse momentum.
- He reported that there is no increase in the dependence of F_2 on M^2
- From previous publications, we know that there is no increase in ΔF_2 in proton intermittency.¹

In this talk I will present:

- Results on intermittency of negatively charged hadrons in Xe+La interaction with 0-20% centrality at 150A GeV/c ($\sqrt{s_{NN}} \approx 17$ GeV)
- Report a strong increase of ΔF_2 with M^2 at p_T binning. But we find that ΔF_2 is approximately independent in cumulative p_T binning.
- The results are attributed to the presence of short-range correlations of the HBT type (around 90% of negatively charged hadrons are π^- mesons subject to Bose-Einstein statistics).

¹NA61/SHINE. In: Eur. Phys. J. C 83.9 (2023), p. 881

Intermittency: Scaled factorial moments (SFMs)

Upon approaching a critical point, correlation length diverges \Rightarrow system becomes scale-invariant or self-similar \Rightarrow enhanced multiplicity fluctuations that can be revealed by scaled factorial moments.

$$F_{2}(M) = \frac{\left\langle \frac{1}{M^{2}} \sum_{i=1}^{M^{2}} n_{i}(n_{i}-1) \right\rangle}{\left\langle \frac{1}{M^{2}} \sum_{i=1}^{M^{2}} n_{i} \right\rangle^{2}}$$

M – number of sub-division intervals n_i – number of particles in i-th cell

When the system is a simple fractal, Fq(M) follows a power law dependence: $F_q(M) = F_q(\Delta)(M^2)^{\phi_q}$ where the critical exponent or intermittency indices ϕ_q obey the relation: $\phi_q = (q-1)d_q$ where the anomalous fractal dimension d_q is independent of q.

 $F_2(M)$ depends on the shape of inclusive single particle distribution. In order to eliminate this dependence we have two approaches

$p_{\rm T}$ binning

Instead of studying $F_2(M)$ we study ΔF_2 . The quantity defined as:¹

 $\Delta F_2(M) = F_2^{data}(M) - F_2^{mixed}(M)$

¹NA49 collaboration. In: Eur. Phys. J. C 75.2 (2015), p. 587 ²Bialas; Gazdzicki. In: Physics Letters B 252.3 (1990), pp. 483-486 ³Antoniou: Diakonos. URL: https://indico.cern.ch/event/818624

Cumulative p_T binning

Instead of using p_x and p_y , one uses cumulative quantities Q_x, Q_y :

$$Q_x = \int_{x_{min}}^{x} \rho(x) dx / \int_{x_{min}}^{x_{max}} \rho(x) dx$$
$$Q_y = \int_{y_{min}}^{x} P(x, y) dy / P(x)$$

- Transform any distribution into uniform in dQ and normalized (0,1))²
- Remove the dependence of F_r on the shape of single particle distribution
- Intermittency index of an ideal power law correlation function remain invariant 3
- Results are displayed in: $\begin{array}{l} \Delta F_2 \ (M)_c {=} F_2^{data}(M) {\text{-}} F_2^{mix}(M) \ \text{where} \\ F_2^{mix} = F(1) \end{array}$

h^{\pm} intermittency results from STAR

In March 2023, the STAR collaboration⁴ published intermittency results of ΔF_2 of charged hadrons in central 0-5% Au+Au collisions at four energies:

- Plots: $[\Delta F_q(M) = F_q^{data}(M) F_q^{mixed}(M) \ (q = 2 6)]$ in double-logarithmic scale.
- STAR reported⁴ that $\Delta F_q(M)$ increases with M^2 and saturates when M^2 is larger than $M^2 > 4000$. Interpretation of the source of this increase needs explanation.

⁴ STAR collaboration, Phys.Lett.B 845 (2023)

NA61/SHINE results on ΔF_2 for p_T binning

Negatively charged hadrons

SFMs are calculated for independent sub-sample for each bin in M, only statistical uncertainties are shown.All results showed in this slides are presented this way

- Similarly to STAR, we observe strong increase on ΔF_2 in experimental data and saturation at high M^2 .
- We repeat the analysis for EPOS Monte Carlo simulations:
 - in its *pure* form
 - and considering *detector effects*.
- Unlike the ΔF_2 of experimental data, these results do not show any increase.

NA61/SHINE results on ΔF_2 for p_T binning

Negatively charged hadrons

SFMs are calculated for independent sub-sample for each bin in M, only statistical uncertainties are shown. All results showed in this slides are presented this way • In the following slide, I will magnify this region where we see the strong increase.

NA61/SHINE results on ΔF_2 for p_T binning

- Here we focus on M² region between 1-1000.
- Within this interval, we also observe a **strong increase** of ΔF_2 for the experimental data.
- But this increase lacks of the characteristic CP power law shape.
- And, once again, EPOS results don't show this increase.

Short range correlations

- A strong increase of ΔF_2 with M is observed for results in p_T binning.
- EPOS model does not show this increase
- We remind that in the case of protons we didn't observed any increase of ΔF_2 results, neither in data or EPOS.

Is there a physics correlation which is present for data h^- , and absent in protons and EPOS h^- , that can explain this behaviour?

Yes, short range correlations, of Bose-Einstein type

So we studied the h^--h^- correlation.

$$\Delta \mathbf{p}_{\mathrm{T}} = \sqrt{(p_{2,x} - p_{1,x})^2 + (p_{y,2} - p_{y,1})^2}$$

For experimental data we observe the typical expected behavior indicating the presence of short range correlations. For pure EPOS there are no correlations, and for EPOS+detector effects there are anti-correlations due to the limited two track resolution.

Short range correlations

If we remove the region with $\Delta p_T < 100 \text{ MeV}/c$, the ΔF_2 is independent of M^2 for both experimental data and EPOS.

This suggests that the increase of ΔF_2 of the data was cause by this short range correlations However, this removal of Δp_T region may also affect possible correlations due to CP.

NA61/SHINE ΔF_2 results \mathbf{p}_{T} vs cumulative \mathbf{p}_{T} binning

Cumulative transformation preserves the scale invariant power law correlations (like CP) but destroys other type correlations.

In fact, we found the that there is not any increase in the results after cumulative transformation.

NA61/SHINE ΔF_2 results \mathbf{p}_{T} vs cumulative \mathbf{p}_{T} binning

When we optimize the outcomes to focus on the interval where the initial rise was observed, we observe same situation.

Results on cumulative p_T binning

*Results in cumulative p_T binning are shown in a different scale

Results after cumulative transformation don't show any increase. This is because cumulative transformation preserves the scale invariant power law correlations, but destroys other types non-scale invariant correlations.

- We present first preliminary results on intermittency of negatively charged hadrons in Xe+La interactions with 0-20% centrality at 150A GeV/c ($\sqrt{s_{NN}} \approx 17 \text{ GeV}$)
- The experimental data on ΔF_2 for p_T binning exhibits an increase, but it does not follow a power law, The increase can be explained by short range correlations (HBT).
- No increase is observed in cumulative p_T distribution. Cumulative transformation preserves the scale-invariant power-law correlations, but destroys other types non-scale invariant correlations.

- We present first preliminary results on intermittency of negatively charged hadrons in Xe+La interactions with 0-20% centrality at 150A GeV/c ($\sqrt{s_{NN}} \approx 17 \text{ GeV}$)
- The experimental data on ΔF_2 for p_T binning exhibits an increase, but it does not follow a power law, The increase can be explained by short range correlations (HBT).
- No increase is observed in cumulative p_T distribution. Cumulative transformation preserves the scale-invariant power-law correlations, but destroys other types non-scale invariant correlations.
- Can the increase of ΔF_2 with M, reported by STAR, be interpreted as due to short-range correlations??

Thanks

Appendix

Intermittency results from STAR

- Distinct power-law scaling of $\Delta F_q(M) \propto \Delta F_2(M)^{\beta_q}$ with a fitting of ΔF_2 from $M \in [30,100]$ at all energies after background subtraction.²
- Value of β_q is the slope of the fitting line.

Comments triggered by this publication

- The connection between the minimum observed at $\sqrt{s_{NN}} = 27$ GeV and QCD CP in the context of STAR intermittency remains unclear, as the STAR intermittency group has not provided a convincing answer
- Physical interpretations of the intermittency results published by STAR are not well-understood from a physics perspective.

2 Phys.Lett.B 845 (2023)

SHINE results: proton intermittency

Results in Cumulative transformation.

H. Adhikary et.al (NA61/SHINE Collaboration), Eur.Phys.J.C 83 (2023) 9, 881 H. Adhiakry (for NA61/SHINE Collaboration), EPJ Web Conf. 274 (2022) 06008

- - - No indication for power-law increase with bin size - - -

* M points are slightly shifted horizontally for different energies to increase readability *

Two particle acceptance map (form NA61/SHINE)

- TPCs are not capable of distinguishing tracks that are too close to each other in space and at a small distance, clusters overlap, and signals are merged
- Two-particle acceptance map provides the precise definition of the biased region in which NA61/SHINE doesn't have good efficiency for measuring two-tracks
- Momentum of each positive particle in both recorded and mixed data sets in the new momentum co-ordinate $s_x(\frac{p_x}{p_{yx}})$, $s_y(\frac{p_y}{p_{yx}})$, and $\rho(\frac{1}{p_{yx}})$
- Proton pairs with momenta inside all following ellipses are rejected

(**see back-up slides for more details**)

$$\begin{pmatrix} \frac{\Delta\rho}{r_{\rho}} \end{pmatrix}^2 + \left(\frac{\Delta s_{y}}{r_{s_{y}}}\right)^2 \leq 1 \\ \left(\frac{\Delta s_{x}}{r_{s_{x}}}\right)^2 + \left(\frac{\Delta s_{y}}{r_{s_{y}}}\right)^2 \leq 1 \\ \left(\frac{\Delta\rho\cos\theta - \Delta s_{x}\sin\theta}{r_{\rho s_{x}}}\right)^2 + \left(\frac{\Delta\rho\sin\theta + \Delta s_{x}\cos\theta}{r_{s_{x}\rho}}\right)^2 \leq 1$$

These two-particle acceptance maps should be used for comparison of experimental results with a model

Effect of two particle acceptance map

After introducing the two particle acceptance map, small anti-correlation appears in Cumulative p_T binning

Methodology comparison summary

	NA49	NA61/SHINE	STAR
goal	QCD CP search	QCD CP search	QCD CP search
reaction	C+C,Si+Si, Pb+Pb	Pb+Pb, Ar+Sc	Au+Au
$\sqrt{s_{NN}}$	pprox 17.3 <i>GeV</i>	5.1-17 GeV	7.7-200 GeV
centrality	0-10% and 0-12%	0-10% and $020%$	0-5% and 10-40%
particle of interests	$\pi^+\pi^-$, p	p, h^- (except e^-)	p, \bar{p} , π^{\pm} , k^{\pm}
phase space	p_x, p_y at mid-rapidity	p_X, p_Y at mid-rapidity	$ p_x, p_y$ within $ \eta < 0.5$
efficiency correction	not corrected ($pprox$ 90%)	not corrected ($pprox$ 90%)	corrected (low efficiency)
background subtraction	mixed event method	cumulative variable method	mixed event method
data points	correlated	independent	correlated
statistical uncertainties	Bootstrap method	Error propagation	Bootstrap method
single-particle acceptance maps	_	3D maps (y, p_T , ϕ)	_
two-particle acceptance maps	geometric	momentum based	
final results	$\Delta F_q(M)$	$F_q(M)$	$\Delta F_q(M)$ and $ u(\sqrt(s_{NN}))$

Previous SHINE results in Pb+Pb 30A GeV/c

Results intermittency h⁻ Cumulative transformation, *note that here is not $\Delta F_2(M)_C$ just $F_2(M)^*$

SHINE results in Xe+La 150A GeV/c

Results intermittency h⁻ in Cumulative transformation, *note that here is not $\Delta F_2(M)_C$ just $F_2(M)^*$

