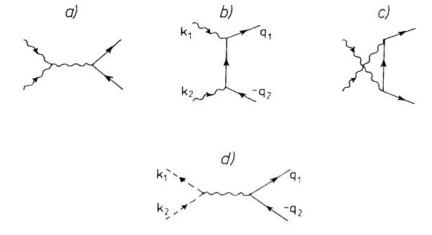


Centrality and Transverse Momentum Dependence of Strange and Multi-strange Hadron Production in in O+O Collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV

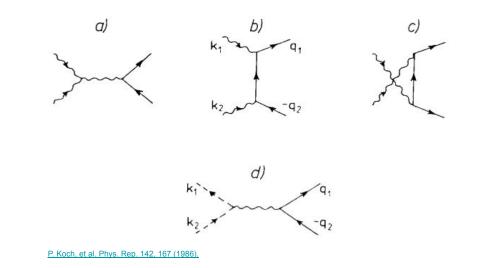
Iris Ponce for the STAR Collaboration

Yale University CPOD 2024 May 20th - 24th

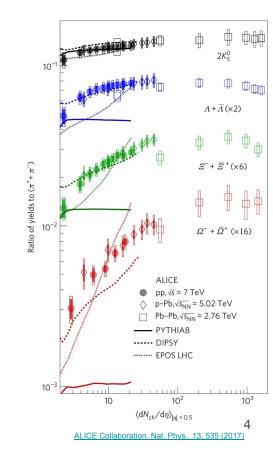

Supported in part by:

Iris Ponce - CPOD 2024

Strangeness Enhancement and the QGP


• Strangeness enhancement was one of the first observables predicted as a signature of the QGP.

P. Koch, et al. Phys. Rep. 142, 167 (1986).


Strangeness Enhancement and the QGP

- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- The thermal production of s-s pairs is favorable in the QGP since the s-s masses are close to the QGP transition temperature ~157 MeV.
 - 2 x m_s ~192 MeV
 - There are abundant thermal gluons in the QGP medium.
- Multi-strange (Ξ[±],Ω[±]) hadrons are more sensitive to the existence of QGP.

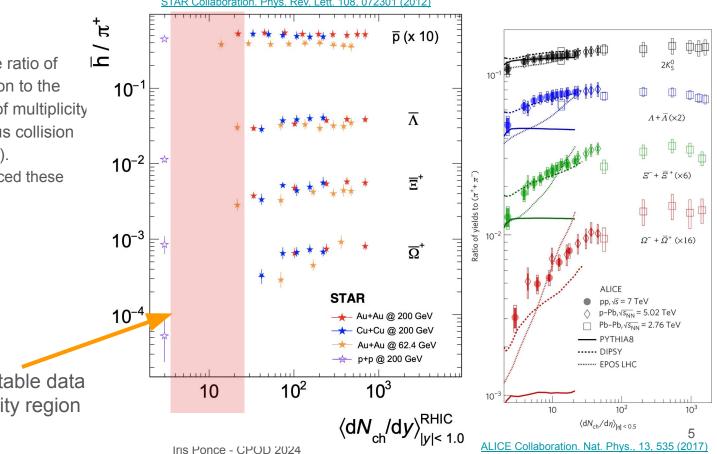
 A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).

 A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).

• STAR has reproduced these ratios.

 STAR Collaboration. Phys. Rev. Lett. 98, 062301 (2007)

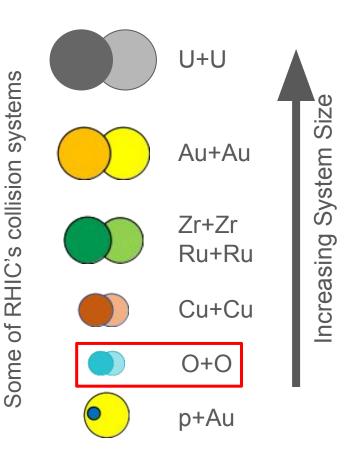
 STAR Collaboration. Phys. Rev. C 77, 044908 (2008)


 STAR Collaboration. Phys. Rev. C 83, 024901 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)



However, there is a notable data gap in the low multiplicity region

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).
 - STAR has reproduced these ratios.
- Oxygen is one of the smallest ions used at RHIC.
 - Fill in the hyperon to pion ratio in the low multiplicity gap
 - Allows a more straightforward geometry mapping with centrality than those asymmetric small system collisions like He+Au, or d+Au

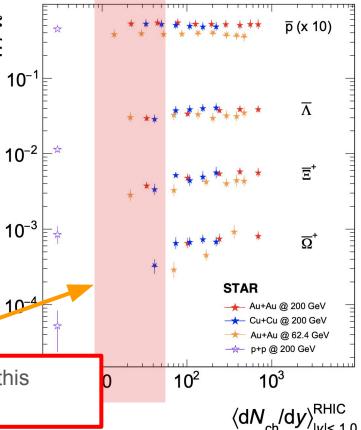
 A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).

μ

- STAR has reproduced these ratios.
- Oxygen is one of the smallest ions used at RHIC.
 - Fill in the hyperon to pion ratio in the low multiplicity gap
 - Allows a more straightforward geometry mapping with

O+O's multiplicity can extend to this unexplored region

 STAR Collaboration. Phys. Rev. Lett. 98, 062301 (2007)

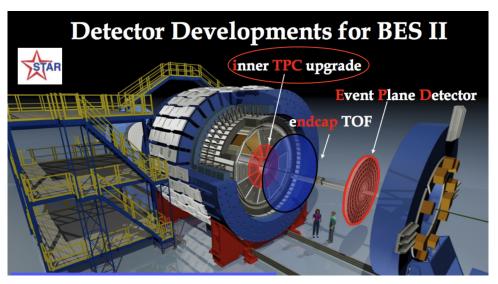

 STAR Collaboration. Phys. Rev. C 77, 044908 (2008)

 STAR Collaboration. Phys. Rev. C 83, 024901 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)

 STAR Collaboration. Phys. Rev. C 83, 034910 (2011)



O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF

Picture: Alex & Maria Schmah Q. Xu. (STAR Collaboration). 8th Workshop on Hadron Physics (2016)

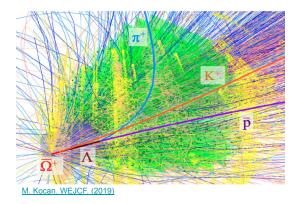
O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF
 - Improved coverage: $|\eta| < 1.5$ from $|\eta| < 1.0$
 - Lower p_{T} coverage 125 MeV => 60 MeV
- There are ~650M O+O minimum bias events total.
 - ¹/₄ of the O+O run was taken with the magnetic field reversed.
 - Testing calibration and TPC distortions

Picture: Alex & Maria Schmah Q. Xu. (STAR Collaboration). 8th Workshop on Hadron Physics (2016)

Particles To Be Reconstructed

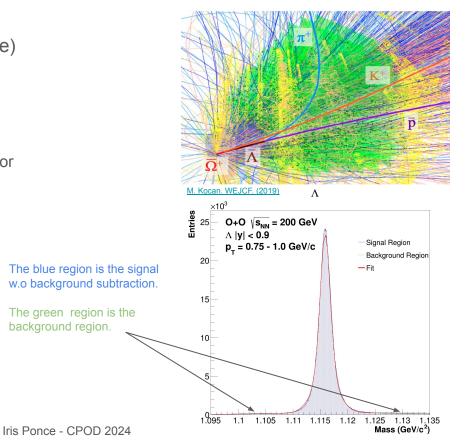
I am interested in reconstructing particles with s-quarks, as listed below.


Particle	Strangeness	Mass~(MeV)	Decay Mode	Branching Ratio
$\phi(1020)$	0	$1,\!019.461\pm 0.020$	K^+K^-	$49.5 \ \%$
K_s^0	± 1	$497.611 {\pm} 0.013$	$\pi^+\pi^-$	69.20~%
Λ	-1	$1{,}115.683{\pm}0.006$	$p\pi^-$	64.1~%
Ξ-	-2	$1{,}321.71{\pm}0.07$	$\Lambda\pi^-$	99.887%
Ω^{-}	-3	$1,\!672.45{\pm}0.29$	ΛK^-	67.8%

- This presentation will focus on Λ 's.
- The Ξ^- , Ω^- , ϕ , and K^0_{S} results will follow soon.

Reconstructing Lambdas and Signal Extraction

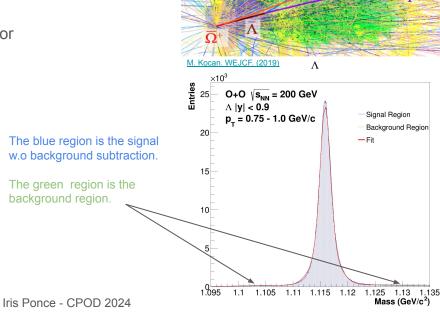
- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.



Reconstructing Lambdas and Signal Extraction

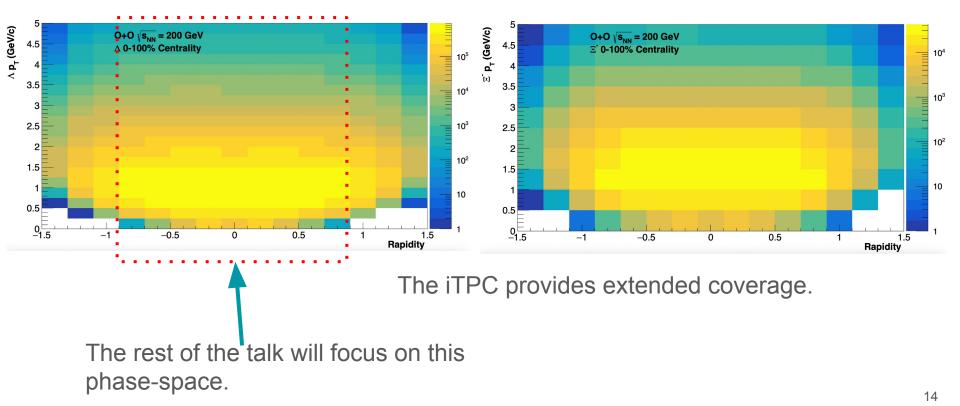
- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

For the Λ Signal Extraction:

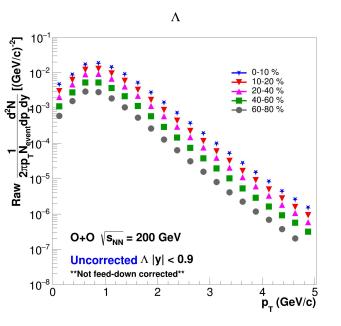


Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

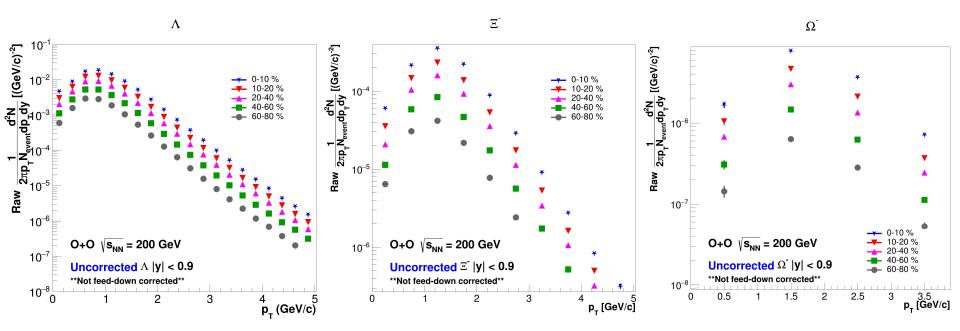

For the Λ Signal Extraction:

- The signal (without background subtraction) region is [μ-3σ,μ+3σ], and the background region is [0 to μ-3σ, μ+3σ to Xmax].
- Fitting function: 2nd poly + double Gauss function.



What does our rapidity coverage looks like?

Uncorrected Raw Spectra for Hyperons in O+O



• There is good coverage through 0 - 80% centralities.

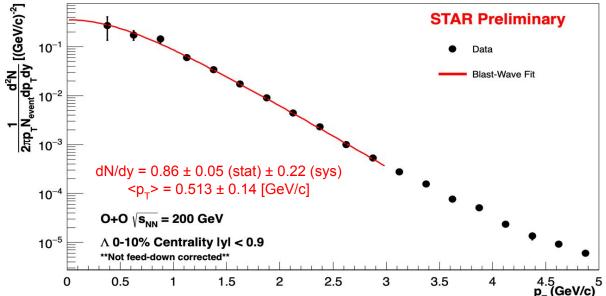
Iris Ponce - CPOD 2024

Uncorrected Raw Spectra for Hyperons in O+O

- The large statistics, improved p_T and rapidity coverage enables STAR to have good statistics for multi-strange hadrons.
- There is good coverage through 0 80% centralities.

Iris Ponce - CPOD 2024

STAR

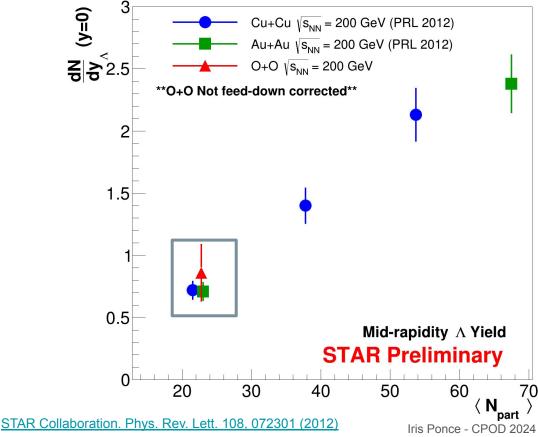

Corrected \textbf{p}_{τ} spectrum for A's in O+O

- The p_T spectra is calculated from the Λ's invariant mass distributions for the different momenta.
- The reconstruction efficiency is calculated using a Monte Carlo which is embedded in real data and then propagated through the detector simulation.

Corrected p_{τ} spectrum for Λ 's in O+O

- The p_T spectra is calculated from the Λ 's invariant mass distributions for the different momenta.
- The reconstruction efficiency is calculated using a Monte Carlo which is embedded in real data and then propagated through the detector simulation.
- The Λ spectra is the average of both magnetic field configurations.

Comparing the O+O yield to similar Collision Systems


Most central O+O collisions have a similar < N_{part} > as peripheral Au+Au collisions.

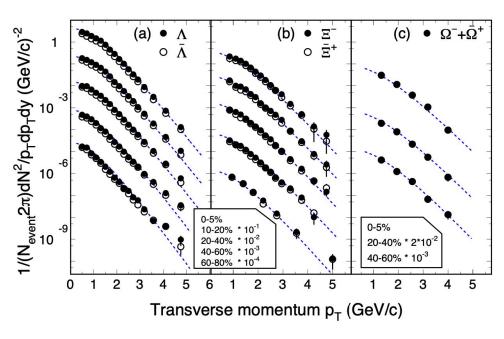
Integrating the Λ p_T spectrum from 0 to ∞ the yield (dN/dy) is 0.86 ± 0.05 ± 0.22

**O+O yield is not feed-down corrected.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar < N_{part} > as peripheral Au+Au collisions.

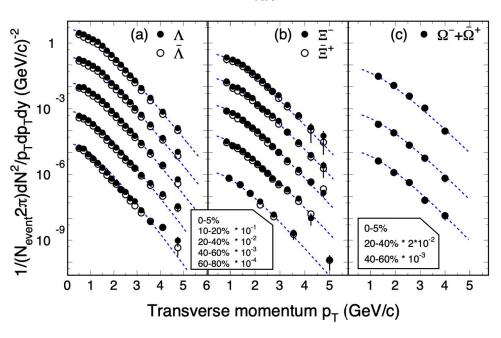
Integrating the Λ p_T spectrum from 0 to ∞ the yield (dN/dy) is 0.86 ± 0.05 ± 0.22


**O+O yield is not feed-down corrected.

Next Steps for Analysis

- Extend the analysis to other hyperons.
 - The raw p_T spectra have been made but is pending the corrections.
- Calculate the yields from corrected spectra.
- Calculate the pion yields.

Transverse momenta distribution for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

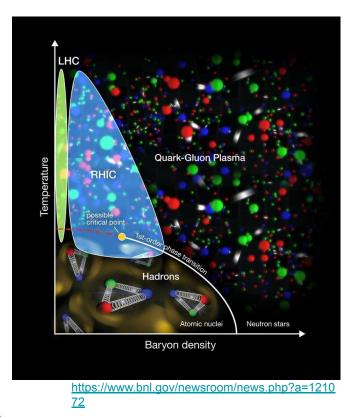

STAR Collaboration. Phys. Rev. Lett. 98, 062301 (2007)

Next Steps for Analysis

- Extend the analysis to other hyperons.
 - The raw p_T spectra have been made but is pending the corrections.
- Calculate the yields from corrected spectra.
- Calculate the pion yields.
- Apply feed-down corrections to spectra for yield calculations.
 - Compute the pion/hyperon ratio in the low multiplicity region
- Use thermal model for freeze-out parameter (e.g. μ_B , T_{ch}) extraction.

Transverse momenta distribution for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

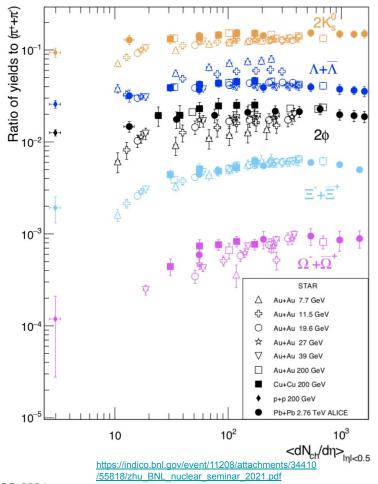
STAR Collaboration. Phys. Rev. Lett. 98, 062301 (2007)


Conclusions

- The O+O at $\sqrt{s_{NN}}$ = 200 GeV is a newer data set for STAR.
- The O+O dataset can fill in the gaps in the low multiplicity regions in the ratio of strange hadron production to the pion yield for the STAR data.
- We presented the first yield calculation for Λ's in the 0-10% centrality region for O+O.
- With the great statistics there will be interesting results for the near future!

Some of STAR's other strangeness results at CPOD

- <u>Y. Zhou</u> presented measurements of K_s^{0} , Λ , Ξ^- production at $\sqrt{s}_{NN} = 3 4.5$ GeV in Au + Au collisions.
 - Soon there will be more measurements from BESII too.
- <u>Y. Leung</u> presented on hypernuclei production at √s_{NN} = 3 - 27 GeV in Au+Au.
- Plus several other analysis!
- Covering different phase-space of the QCD diagram!



Backup

Full spectra with BES yields

Flow Measurements in O+O collisions shown in QM2023

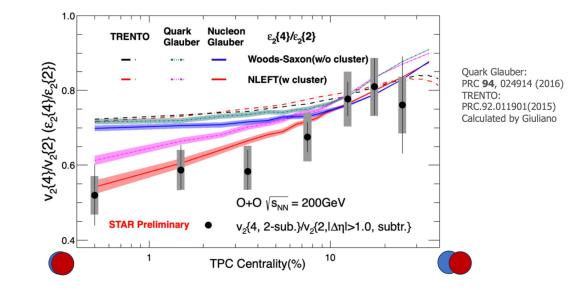
Bulk Results:

Similar N_{part} to ³He-Au

```
v_2(O+O) < v_2(d+Au) \approx v_2(^{3}He+Au)
v_3(O+O) \approx v_3(d+Au) \approx v_3(^{3}He+Au)
```

• v_n / ε_n are similar between O+O and ³He+Au, within a quark Glauber model

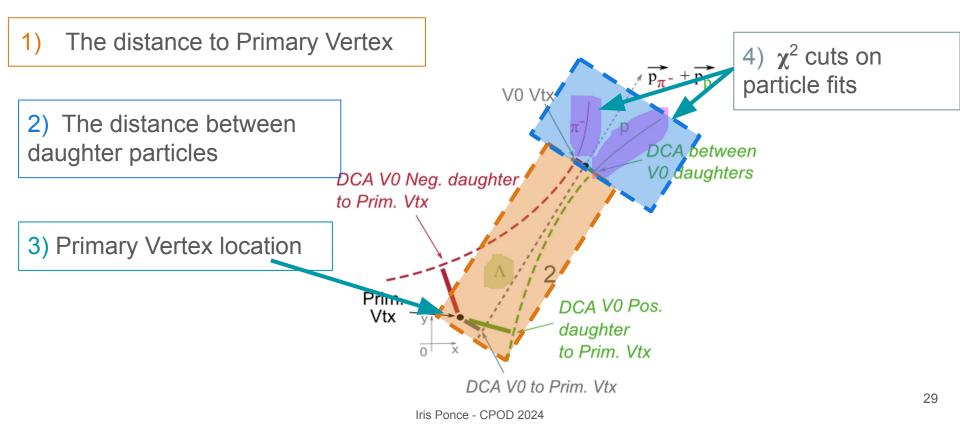
S. Huang (STAR Collaboration). QM2023


Flow Measurements in O+O collisions shown in QM2023

Bulk Results:

Similar Npart to ³He-Au

 $v_2(O+O) < v_2(d+Au) \approx v_2(^{3}He+Au)$ $v_3(O+O) \approx v_3(d+Au) \approx v_3(^{3}He+Au)$


- v_n / ε_n are similar between O+O and ³He+Au, within a quark Glauber model
- v_2 {4}/ v_2 {2} show clear decrease in ultra-central collisions, consistent with ε_2 {4} / ε_2 {2}, indicating enhanced fluctuations due to possible many-nucleon correlations.

S. Huang (STAR Collaboration). QM2023

Reconstruction Details and Topological Cuts

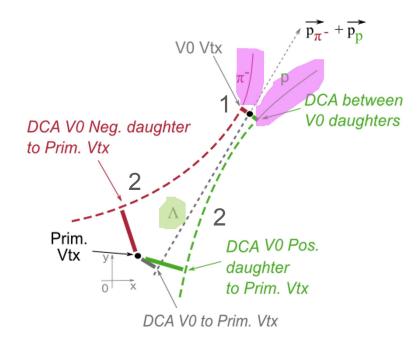
Reconstruction Details and Topological Cuts

1) MaxDistanceBetweenParticlesCut (DCA

between daughters): 5 cm

2) LCut (distance to primary vertex): > 1 cm

3) **Chi2Cut2D** (cut on χ^2 of the particle fit): > 20


4) **ChiPrimaryCut** (cut on χ^2 of the tracks to the PV to divide tracks into primary and secondary) : > 3. 5) **ChiPrimaryCut2D** (cut on χ^2 of the track to the PV): > 3.

6) **LdLCut2D** (cut on the distance to PV normalized on the error): > 3

7) **Vz** < | 145 | cm

8) **Vr** < 2 cm

9) **nHitsFit** > 15

