High-p_T hadron+jet correlations in ALICE

F. Krizek, L. Cunqueiro, R. Ma and P. Jacobs

Nuclear Physics Institute of CAS
krizek@ujf.cas.cz

July 2–3, 2018
Hard scattering in heavy-ion collisions

- Hard scattered partons produce collimated sprays of particles (back-to-back, p_T balanced)

- Jet is a phenomenological object defined via algorithm

- Well understood theoretically in pQCD in elementary reactions

- Hard scattering occurs in early stages of heavy-ion collision

- Jet quenching

CMS, PRC 84, 024906 (2011)
Hard scattering, rare process embedded in large background

Spectrum of reconstructed jets at low p_T dominated by combinatorial jets

Suppression of combinatorial jets by high-p_T jet constituent requirement results in fragmentation bias on jets
Hadron-jet coincidence measurement

\[TT = \text{trigger track} \]

\[TT\{X,Y\} \text{ means } X < p_{T,\text{trig}} < Y \text{ GeV/c} \]

- h-jet correlation allows to suppress combinatorial jets including multi parton interaction without imposing fragmentation bias
- Data driven approach allows to measure jets with large \(R \) and low \(p_T \)
- In events with a high-\(p_T \) trigger hadron analyze recoiling away side jets [1]
 \[|\phi_{\text{trig}} - \phi_{\text{jet}} - \pi| < 0.6 \text{ rad} \]
- Assuming combinatorial jets are independent of trigger \(p_T \)
\[\Delta_{\text{recoil}} \text{ in Pb–Pb at } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \]

\[\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,\text{jet}}^\text{ch} d\eta} \bigg|_{p_{T,\text{trig}} \in \{20,50\}} - \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,\text{jet}}^\text{ch} d\eta} \bigg|_{p_{T,\text{trig}} \in \{8,9\}} \]

Link to theory

\[\frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{T,\text{jet}}^\text{ch} d\eta_{\text{jet}}} \bigg|_{p_{T,\text{trig}} \in \text{TT}} = \left(\frac{1}{\sigma^{\text{AA} \rightarrow h+\text{jet}+X}} \cdot \frac{d^2 \sigma^{\text{AA} \rightarrow h+\text{jet}+X}}{dp_{T,\text{jet}}^\text{ch} d\eta_{\text{jet}}} \right) \bigg|_{p_{T,h} \in \text{TT}} \]

- \(\Delta_{\text{recoil}} \) corrected for background smearing of jet \(p_T \) + detector effects
- Medium effects

\[\Delta I_{\text{AA}} = \Delta_{\text{recoil}}^{\text{Pb–Pb}} / \Delta_{\text{recoil}}^{\text{pp}} \]

Need pp reference at the same \(\sqrt{s} \)
\[\Delta I_{AA} = \Delta^{\text{Pb-Pb}}_{\text{recoil}} / \Delta^{\text{PYTHIA}}_{\text{recoil}} \] in Pb–Pb at \(\sqrt{s_{NN}} = 2.76 \) TeV

- Reference \(\Delta^{\text{PYTHIA}}_{\text{recoil}} \) from PYTHIA Perugia 10
- Suppression of the recoil jet yield
- Magnitude of the suppression similar for different \(R \)

More details in ALICE collab., JHEP 09 (2015), 170
Ratios of recoil jet yields obtained with different R

ALICE

- 0-10%, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
- Anti-k_T charged jets
- $\pi - \Delta \varphi < 0.6$
- TT{20,50} – TT{8,9}

Red band: variation in observable calculated using PYTHIA tunes

- No evidence for significant energy redistribution w.r.t. PYTHIA up to jets with $R = 0.5$
Search for medium-induced large angle Molière scatterings

Multiple Coulomb scattering of charged particle in matter

- Small deflections - Gaussian due to multiple Coulomb scattering
- Large deflections - power-law tail due to single hard scatterings
Search for medium-induced large angle Molière scatterings

- Small deflections - Gaussian due to multiple Coulomb scattering
- Large deflections - power-law tail due to single hard scatterings
- Use recoil jets to search for QGP quasi-particles [1] by looking at enhancement in large angle deflections w.r.t. reference pp

$\Phi(\Delta \varphi)$ in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV

For recoil jets in $40 < p_{T,jet}^{ch} < 60$ GeV/c define

$$\Phi(\Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,jet}^{ch} d\Delta \varphi} \bigg|_{TT\{20,50\}} - \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,jet}^{ch} d\Delta \varphi} \bigg|_{TT\{8,9\}}$$
\(\Phi (\Delta \varphi) \) in Pb–Pb at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \) and PYTHIA

Compare raw data with PYTHIA pp folded with ALICE accept. & res.

- Quantify the width \(\sigma \) by the fit in range \(2\pi/3 < \Delta \varphi < \pi \)

\[
f (\Delta \varphi) = a \times \exp \left(\frac{\Delta \varphi - \pi}{\sigma} \right) + b
\]

- Similar \(\sigma \) no evidence for medium-induced acoplanarity of

40 < \(p_{T,\text{jet}}^{\text{ch}} < 60 \) GeV/c recoil jets

- Quantify the rate of large angle scatterings

\[
\Sigma (\Delta \varphi_{\text{thresh}}) = \int_{\pi/2}^{\pi - \Delta \varphi_{\text{thresh}}} d \Delta \varphi \left[\Phi (\Delta \varphi) \right]
\]
$\Sigma (\Delta \varphi_{\text{thresh}})$ in Pb–Pb at $\sqrt{s_{\text{NN}}} = 2.76$ TeV and PYTHIA

- Ratio < 1 corresponds to the suppression of recoil jet yield
- Shape of the ratio depends on underlying processes
- Fit of the ratio by a linear function gives slope consistent with zero
 \Rightarrow No evidence for medium-induced Molière scattering
QGP signatures in small systems

- Indication of collective effects in p–Pb
- Is there jet quenching in p–Pb?

Considerations

- $\Delta E \propto \hat{q}L^2$

- $\hat{q}|_{pPb} = \frac{1}{7}\hat{q}|_{PbPb}$

- $\hat{q}|_{PbPb} = (1.9 \pm 0.7) \text{GeV}^2/\text{fm}$

- $\hat{q}|_{\text{Cold Nuclear Matter}} \approx 0.02 \text{GeV}^2/\text{fm}$

- $\Delta E = (8 \pm 2_{\text{stat}}) \text{GeV}/c$ medium-induced E transport to $R > 0.5$ in Pb–Pb

 ALICE, JHEP 09 (2015) 170
Event Activity biased jet measurements in d+Au at RHIC

Jet R_{dAu} in d+Au at $\sqrt{s_{NN}} = 200$ GeV

$$R_{dAu} = \frac{dN_{jets}^{cent}}{T_{dAu} \cdot d\sigma_{pp} / d\rho_T}$$

- R_{dAu} for MB compatible with unity
- Event Activity strongly affects R_{dAu}

EA from BBC in Au-going direction $3 < |\eta| < 3.9$

EA = Event Activity
Jet R_{pPb} in p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

EA from E_T in Pb-going direction $-4.9 < \eta < -3.2$

Caveats:

- T_{pPb}, T_{dAu} assume EA correlated with geometry (Glauber modeling)
- Conservation laws and fluctuations

Kordell, Majumder, arXiv:1601.02595v1

Alternative:

h-jet correlations conditional yields
Semi-inclusive hadron + jet observables and T_{AA}

Calculable at NLO pQCD [1]

$$\frac{1}{N_{trig}^{AA}} \left. \frac{d^2 N_{jet}^{AA}}{d p_{T, jet}^{ch} d \eta_{jet}} \right|_{p_{T, trig} \in TT} \left. \frac{1}{\sigma_{AA \rightarrow h+X}} \cdot \frac{d^2 \sigma_{AA \rightarrow h+jet+X}}{d p_{T, jet}^{ch} d \eta_{jet}} \right|_{p_{T, h} \in TT}$$

In case of no nuclear effects

$$\frac{1}{N_{trig}^{AA}} \left. \frac{d^2 N_{jet}^{AA}}{d p_{T, jet}^{ch} d \eta_{jet}} \right|_{p_{T, trig} \in TT} = \left. \frac{1}{\sigma_{pp \rightarrow h+X}} \cdot \frac{d^2 \sigma_{pp \rightarrow h+jet+X}}{d p_{T, jet}^{ch} d \eta_{jet}} \right|_{p_{T, h} \in TT} \times \frac{T_{AA}}{T_{AA}}$$

- This coincidence observable is self-normalized, no requirement of T_{AA} scaling
- No requirement to assume correlation between Event Activity and collision geometry, no Glauber modeling

Event Activity in p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Pb-going direction

ZNA

Charged track reconstruction

$|\eta| < 0.9$, $p_T > 150$ MeV/c

ITS 6-layered silicon tracker

TPC time projection chamber

Event Activity assignment in p–Pb

- High-p_T track requirement (TT) biases event to large EA
- Similar EA bias for TT 6–7 GeV/c and 12–50 GeV/c
Δ_{recoil} in p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Raw spectrum

- ALICE p–Pb $\sqrt{s_{NN}} = 5.02$ TeV
- 0–20% ZNA
- Anti-k_T charged jets, $R = 0.4$
 - $-0.43 < y_T^* < 1.36$; $-0.03 < y_{jet}^* < 0.96$
 - $\pi - \Delta \phi < 0.6$
- $\text{TT}(12,50)$
 - Integral $\text{TT}(12,50) = 1.84$
- $\text{TT}(6,7)$
 - Integral $\text{TT}(6,7) = 1.83$
- $\Delta_{\text{recoil}} (c_{\text{Ref}} = 0.94)$

Statistical errors only

Fully corrected

- p–Pb $\sqrt{s_{NN}} = 5.02$ TeV
- $y_{NN} = -0.465$
- $\text{MB} 20\% - \text{ZNA} 0$
- $\text{Syst. uncert.} \text{ALICE Preliminary}$

$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{d p^{ch}_{T,\text{jet}} d \eta} \bigg|_{p_{T,\text{trig}} \in \text{TT}\{12,50\}} \quad - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{d p^{ch}_{T,\text{jet}} d \eta} \bigg|_{p_{T,\text{trig}} \in \text{TT}\{6,7\}}$

- Correction via unfolding for local bkgd. fluct. and instrumental effects
- Systematic uncertainties on Δ_{recoil}
 - tracking efficiency 4–10%
 - other sources $< 4\%$
Ratios of Event Activity biased Δ_{recoil} distributions

ZNA

\[
\text{ALICE p-Pb } \sqrt{s_{NN}} = 5.02 \text{ TeV}
\]

- Δ_{recoil} distributions
- $p_{T,jet}^{ch}$ (GeV/c)
- 100% ZNA - 50-100% ZNA
- Δ_{recoil}
- $R = 0.4$
- $0.43 < y^* < 1.36$; $-0.03 < y_{jet}^* < 0.97$
- $\pi - \Delta \phi < 0.6$
- Syst. uncert. ± 0.4 GeV/c spectrum jet shift

V0A

\[
\text{ALICE p-Pb } \sqrt{s_{NN}} = 5.02 \text{ TeV}
\]

- Δ_{recoil} distributions
- $p_{T,jet}^{ch}$ (GeV/c)
- 100% V0A - 50-100% V0A
- Δ_{recoil}
- $R = 0.2$
- $0.43 < y^* < 1.36$; $-0.23 < y_{jet}^* < 1.17$
- $\pi - \Delta \phi < 0.6$
- Syst. uncert. ± 0.4 GeV/c spectrum jet shift

Ratio

\[
\frac{\Delta_{\text{recoil}}|_{0-20 \%}}{\Delta_{\text{recoil}}|_{50-100 \%}}
\]

compatible with unity

Systematic uncertainties:
- unfolding $3-8\%$
- other sources $<4\%$

Correlated syst. uncert. in numerator and denominator cancel
Out-of-cone energy transport

- Low infra-red cutoff ⇒ suppression results from spectrum shift due to out-of-cone energy transport
- Express the suppression in terms of energy shift \bar{s}

 ![Graph](image.png)

 Parameterize
 $$\Delta_{\text{recoil}}|_{50-100\%} = a \exp \left(-\frac{p_{T,\text{jet}}^{\text{ch}}}{b} \right)$$

 Assume parton energy loss causes average shift of Δ_{recoil} by \bar{s} independent of $p_{T,\text{jet}}^{\text{ch}}$
 $$\Delta_{\text{recoil}}|_{0-20\%} = a \exp \left(-\frac{p_{T,\text{jet}}^{\text{ch}} + \bar{s}}{b} \right)$$

 the same a and b as for $\Delta_{\text{recoil}}|_{50-100\%}$

 \[
 \frac{\Delta_{\text{recoil}}|_{0-20\%}}{\Delta_{\text{recoil}}|_{50-100\%}} = \exp \left(-\frac{\bar{s}}{b} \right)
 \]
Shift for high EA (0–20 %) relative to low EA (50–100 %) p–Pb
\[\bar{s} = (-0.06 \pm 0.34_{\text{stat}} \pm 0.02_{\text{syst}}) \text{ GeV/c for V0A} \]
\[\bar{s} = (-0.12 \pm 0.35_{\text{stat}} \pm 0.03_{\text{syst}}) \text{ GeV/c for ZNA} \]
\[\bar{s} = (8 \pm 2_{\text{stat}}) \text{ GeV/c in Pb–Pb} \]

Medium-induced charged energy transport out of \(R = 0.4 \) cone is less than 0.4 GeV/c (one sided 90% CL)
Summary

- h+jet technique allows to measure jet quenching in heavy-ion collisions and small systems
 - does not require the assumption that Event Activity is correlated with collision geometry
 - provides systematically well-controlled comparison of jet quenching as a function of Event Activity

- Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV: suppression of recoil jet yield, but no evidence of intra-jet broadening of energy profile out to $R = 0.5$

- p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV: no significant quenching effects are observed when comparing recoil jet yield for low and high Event Activity for both EA metrics. At 90% CL, medium-induced charged energy transport out of $R = 0.4$ cone is less than 0.4 GeV/c
Backup slides
Corrections of raw jet spectra

- **Background fluctuations:**
 embedding MC jets or random cones \[\delta p_t = \sum_i p_{t,i} - A \cdot \rho \]

- **Detector response:**
 based on GEANT + PYTHIA

- **Response matrix:**
 two effects are assumed to factorize
 \[R_{\text{full}} \left(p_{T,\text{jet}}^{\text{rec}}, p_{T,\text{jet}}^{\text{part}} \right) = \delta p_t \left(p_{T,\text{jet}}^{\text{rec}}, p_{T,\text{jet}}^{\text{det}} \right) \otimes R_{\text{instr}} \left(p_{T,\text{jet}}^{\text{det}}, p_{T,\text{jet}}^{\text{part}} \right) \]

- \(R_{\text{full}}^{-1} \) obtained with Bayesian [2] and SVD [3] unfolding with RooUnfold [4]

Charged jets: tracks $|\eta| < 0.9, 0^\circ < \varphi < 360^\circ, p_T^{\text{const}} > 150$ MeV/c

Full jets: tracks + EMCAL/DCAL clusters, $|\eta| < 0.7$, EMCAL: $80^\circ < \varphi < 180^\circ$, DCAL: $260^\circ < \varphi < 327^\circ$

Jet reconstruction: anti-k_T algorithm (FastJet package [1])

Given jet R, charged jet acceptance is $|\eta_{\text{jet}}| < 0.9 - R$

Mean background density correction

Background energy density ρ estimated by area-based method [1]

$$\rho = \text{median}_{kT \text{ jets}} \left\{ \frac{p_{T,\text{jet}}}{A_{\text{jet}}} \right\}$$

event by event

$$p_{T,\text{jet}}^{\text{corr}} = p_{T,\text{jet}} - \rho \times A_{\text{jet}}$$