Fusion Neutronics Session Session Overview

1. What are the anticipated reactions for energy production, and do specific data needs exist?
2. What are the products of these reactions, and are there data needs for understanding secondary reactions?
3. Are there gaps in current neutronics code capabilities to accurately model the interactions?
4. ND must accurately predict shielding, activation, dose rates, and neutron diagnostics.
5. What data are necessary to operate neutron sources (IFMIF, FPNS, etc.)?

Application/User Perspective

Nuclear Data Evaluations

Heavy
Evals
Gustavo Nobre

- BNL

Experimental Capabilities

\qquad PN EJ301Array	Fission			
LsDS fission $\sigma, /$ fragment dist//Capture rates	BT			
Fast/LiGlass Arra				ETT/C Multiplicity Detector 11 Multiplicity Detector BBT BAC Scattering BBT Multiplicity Detector BT EJJ301 Array Multiplicity Detector \quad ETT/C PAC LLi-Glass Array

Capture BBT/PAC $\mathbf{C}_{6} \mathbf{D}_{6}$ Capture Detector BBT Multiplicity Detector

BT 250 m EJ301 PAC 100 m LiGlass Detector
Transmission Detector
BBT/PAC/BBT $25 \mathrm{~m} / 30 \mathrm{~m}$ LiGlass Detector

RPI 10^{7} ETTC - EIT + cold moderator PN - Photione tion targe

- Path for 14 MeV light ion evaluations has been identified
- Reactor nuclear data needs focus on ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}, \mathrm{Be}$, structural materials
- Activation of several materials for decay heat, diagnostics, and dosimetry; importance of isomer production
- Isotopes needing attention:
- ${ }^{9} \mathrm{Be}(\mathrm{n}, 2 \mathrm{n})$ - fundamental for neutron breeding
- 1.75 MeV (n,2n) threshold accessed by 2.45 MeV D-D and 14 MeV D-T neutrons
- Modern light element evaluations do not currently reach 14 MeV
- From Pulsed Spheres: Li, C, O, Mg, Al, Ti, Fe, Pb
- Med/Heavy Evals: Co, Cu, Mo, Nb, Sn, Ni, Mn, Ti, V
- White source, mono-E, and reactor neutron facilities are ready to carry out neutronics measurements of interest.

Fusion Neutronics Session Highlights / Take-aways (2)

- Need additional comprehensive sensitivity studies using reliable covariances
- Differential measurements are needed at a distribution of energies, not just at 14 MeV ! - Integral and differential measurements complement each other
- Need survey of nuclei in need of measurements and evaluation, and those in need of just evaluation
- Close communication between evaluators, experiment, and users.
- Accelerating communication will accelerate the process
- Prospect of building a small-scale fusion device to understand the issues associated with running a functional reactor for energy production

Recommendations

- Program to prioritize nuclear data needs considering the impact (feasibility, economy) on fusion reactor design
- Short list of most promising concepts
- Evaluation of the nuclei and nuclear reactions identified in fusion reactor sensitivity studies are (a) in need of new measurements, or (b) in need of a new evaluation
- Coordinate exploitation of various neutron sources to cover range of neutron energies, flux, fluence, integral and differential experiments.
- Central repository of information on facility capabilities
- Decision on high fluence neutron source
- Work force development, evaluations, neutron sources and fission and fusion facilities.
- Continued exchange of information between ND and fusion communities.

CALL FOR PAPERS

PUBLISHING OPPORTUNITY

Special issue on nuclear data for fusion applications

Free standard publication; open access APC \$2630.

To express interest, email the guest editors or fst@ans.org.

Or to submit, scan the QR code and select "Nuclear Data for Fusion Applications."

GUEST EDITORS
Dieter Leichtle
dieter.leichtle@kit.edu
Michael Loughlin
loughlinmj@ornl.gov

Keegan Kelly kkelly@lanl.gov

American Nuclear Society

