

Experiendo cognoscitur

Wanted: Tiny radioactive samples for neutron transmission measurements with DICER at LANSCE

<u>Th. Stamatopoulos¹</u>, P. Koehler¹, A. Couture¹, G. Rusev² V. Mocko², E. Vermeulen², E. O'Brien² B. DiGiovine³

1. Physics Division, Los Alamos National Laboratory, 87545, NM, USA

- 2. Chemistry Division, Los Alamos National Laboratory, 87545, NM, USA
- 3. Weapons Stockpile Modernization Division, Los Alamos National Laboratory, 87545, NM, USA

LA-UR-24-21823

The why

The why

(n,γ)

Zr 87		Zr 88		Zr 89		Zr 90		Zr 91		Zr 92	
14.0 s	1.68 h	83.4 d		4.161 m 78.41 h		809.2 ms 51.45		11.22		17.15	
	γ 1227 1210		\mathbf{N}	ε β ⁺ 0.9, 2.4	ε β ⁺ 0.9	IT 2319 133					
IT 135, e⁻ γ 201	1024 m	γ 393		γ 1507 g	γ (1713) m	γ 2186	σ 0.014	σ 1.30		σ 0.131	
Y	86	Y 87		¥ Y 88		Y 89		Y 90		Y 91	
47.4 m	14.74 h	13.37 h	79.8 h	106.0	626 d	15.663 s	100	3.19 h	64.05 h	49.71 m	58.51 d
11 (10), e γ 208	ε, β΄ 1.2 3.2	IT 381	ε β+	c				IT 480	β [−] 2.3		
β⁺ γ (1077 1153)	γ 1077 628 1153	ε β⁺ g	γ 485 389 m	ε β⁺ γ 1836, ∛	898	IT 909	σ 0.001 + 1.279	γ 203 β⁻ γ (231 9)	γ (2186) σ < 6.5	IT 556	β⁻ 1.5 γ (1205) σ 1.4
Sr	85	Sr 86		Sr 87		Sr 88		Sr 89		Sr 90	
67.63 m	64.849 d	9.86		2.815 h 7.00		82.58		50.563 d		28.91 a	
IT (7) e⁻								β [−] 1.5		β [−] 0.5	
γ 232	3							γ (909) G		no γ	
ε, no β⁺ γ 151	no β⁺ γ 514	σ 0.791 + 0.24		ε σ 16.7		σ 0.0055		ց σ 0.42		9 σ 0.010	

(n,2n)

The what-we-know

The how-we-wish

The where

- 1. LANSCE@LANL
- 2. 1st takeaway: walking distance from IPF!
- 3. 2nd takeaway: A few minutes drive to the hot-cells.

A few specs

1. Cylinder

Powder

2. 1 mm or 0.1 mm diameter

Al canister

with a pass-through hole

Capillary tube

LOS AL

nerical Plua

3. 1.5 cm in length

Al plug

- 4. Liquid, powder and metallic samples.
- 5. Sample canister: 1.5 cm long, 1 cm diameter
- 6. Cryogenic and gaseous targets are on the works

Powder sample, stuffed in a capillary tube, plugged with Al wire and placed inside an Al DICER canister

Liquid radioactive ⁸⁸Zr sample, dispensed in a W canister

Metallic sample (Mo, Cd, Gd) in an Al screw down canister.

A few more specs

- Samples should fit the DICER sample format (1/0.1 mm diameter, 1.5 cm length)
- 2. Uniformity and homogeneity
- 3. Minimization of hydrogen: replacement with deuterated compounds(?)

A few more specs

- Samples should fit the DICER sample format (1/0.1 mm diameter, 1.5 cm length)
- 2. Uniformity and homogeneity
- 3. Minimization of hydrogen: replacement with deuterated compounds(?)
- 4. Other components in the sample, should be transmission friendly: Avoid nuclei that are neutron absorbers. $\boxed{5^{1.2}}$

The curious case of 88 Zr (t_{1/2} = 83.4 days)

- LLNL: σ_γth = 0.861(69) Mb
 Shusterman et al., Nature 565, p 328 (2019)
- LLNL: I_y = 2.530(280) Mb Shusterman et al., PRC 103 124614 (2021)

DICER-IPF synergy: The ⁸⁸Zr case aka a success story

- The radioactive sample fabrication relies on the synergy between LANSCE and IPF
- Proton irradiation of a suitable bulk material (⁸⁹Y)
- Chemical separation and purification (600 mCi, 10 mL ⁸⁸Zr + H₂O•6mol/L HCl)
- Gamma spectroscopy to extract mass

A. Stamatopoulos et al., EPJ., Conf. 260, 03006 (2022)

10³

Development of filling station

• To enclose our ⁸⁸Zr liquid sample, we developed a filling station that was remotely operated in the hot cells and dispensed the material in W cans.

Development of a 0.1 mm collimator : ⁸⁸**Y case**

• Need for 0.1 mm-diameter samples: Development of a new 0.1 mm collimator

Development of a 0.1 mm collimator

• Need for 0.1 mm-diameter samples: Development of a new 0.1 mm collimator

Development of inkjet printing

- Inject printing of radioactive samples is a possibility we are currently exploring
- This will hopefully allow to print samples with a small diameter (i.e. ⁸⁸Y)

Development of inkjet printing

• We managed to print NaCl, some Vanadium salts and YOCl.

NaCl on silicon substrate; different printer settings

Development of microjet printing

 Inkjet printing of radioactive samples is a possibility that LENZ and DICER are currently exploring

Development of microjet printing

YOCI ink printed on Zr substrate by Scott Essenmacher

A few future nuclides we would like to study

Nuclide	Half-life				
⁸⁸ Y	106.6 days				
¹⁰⁷ Pd	6.5 10 ⁶ years				
¹³⁴ Cs	2.065 years				
¹⁴⁷ Pm	2.62 years				
¹⁵² Eu	13.52 years				
¹⁵⁵ Eu	4.75 years				
¹⁵³ Gd	240.4 days				
¹⁶³ Ho	4570 years				
¹⁷⁰ Tm	128.6 days				
¹⁸⁵ W	75.1 days				
¹⁸⁶ Re	3.72 days				
¹⁹² lr	73.8 days				
¹⁹³ Pt	50 years				

Nuclide	Half-life			
³ Н	12.3 years			
¹⁷¹ Tm	1.92 years			
¹⁵¹ Sm	90 years			
² H	stable			
¹³³ Cs	stable			
⁴⁰ Ar	stable			

Thank you for your attention!

FIESTA 2024

FISSION EXPERIMENTS AND THEORETICAL ADVANCES **3RD EDITION SCHOOL AND WORKSHOP**

LANL.GOV/FIESTA2024

Back-up slides

Press that we used to seal the 88Zr sample

The Pb seal we used on the 88Zr sample

• The press deformed the Pb shot

