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In general: Isotope production and/or separation, target fabrication, characterization

*  For (n,z) measurements need relatively thin (typ. ~1 ug/cm? to 1 mg/cm?2), with uniform deposition area (or self-
supported targets always ideal). Becomes more challenging when fabricating radioactive or rare isotope targets
due to the need for efficient chemistry and deposition methods.

* Exploring a variety of techniques such as thermal evaporation, microjet printing, electro-spraying, electro-
deposition, etc., with the Isotope Team at LANL (V. Mocko, C.E. Vermeulen), K. Manukyan at Notre Dame, S.

Essenmacher (from MSU, now at LANL)...

* Not just fabricating the targets, but need to characterize mass, uniformity, purity, etc.
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Figure 1. Schematics of the
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https://www.sciencedirect.com/journal/nuclear-instruments-and-methods-in-physics-research-section-a-accelerators-spectrometers-detectors-and-associated-equipment/vol/1055/suppl/C

Measurement of *®Ni(n,z) at WNR with a radioactive target from the

Isotope Production Facility (IPF) and the Hot-Cell Facility (LANL LDRD)

e Production of *°Ni (T, ,, ~ 6 days) tested at multiple beam energies to optimize purity
e Optimization of chemical separation and target fabrication inside hot-cell

e Significant coordination required between start of experiment (alignment and background
measurements initiated at WNR, simultaneously with the start of >6Ni production at IPF)

e Any time lost means less *°Ni and the build up of impurities prior to neutron beam on target
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Test Production of *®Ni and *°Ni at IPF and UW Madison:
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Isolation of °°Ni from irradiated Cobalt Targets

%9Co(p, 4n) %°Ni, t,, = 6. 075 days
45.8 g Co metal

Dissolution

Co removal — 6 column in parallel

el in 2 hot cells
Distillation Residue after first

separation
@BLosAlamos  slide reproduced from V. Mocko (LANL) WANDA 2022 2B



Gas production on long-lived radioactive *°Ni

» A well-known case of a long-lived radioisotope of nickel that can build up from
%8Ni(n,g) in typ. reactors and from ®°Ni(n,2n) in fusion environments

 Long half-life (~100k years) and large positive Q-values (+ 5.1 MeV for **Ni(n,a)
and +1.9 MeV for **Ni(n,p)) can make it a sig. driver of further energy production

« Background reaction for our study of *°Ni but reported **Ni(n,p) and °*Ni(n,a) cross
sections up to ~ 10 MeV: https://doi.org/10.1103/PhysRevC.105.044608

* Only other available data in EXFOR at fusion energies of interest was derived
using an indirect surrogate ratio method, for which the authors stated:

o

Direct experimental measurements of cross sections for
. unstable long-lived radionuclide (*’Ni) are not possible as

A search for *°Ni(n,*) on EXFOR: ) & : (. ) = B0k POas
SR T PEEE T e Bs DE T B it does not occur in naturally available Ni isotopes. In the
J. Pandey Phys. Rev. C 99, 014611

Direct measurements at LANSCE, n_TOF, ORELA
over the past 50 years



https://doi.org/10.1103/PhysRevC.105.044608
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Gas production on long-lived radioactive *°Ni

A well-known case of a long Measurements of the *Ni(n, @) Cross Section

%8Ni(n,g) in typ. reactors anc

Long half-life (~100k years)
and +1.9 MeV for **Ni(n,p))

Background reaction for our
sections up to ~ 10 MeV: htt]

Only other available data in
using an indirect surrogate r.

A search for *°Ni(n,*) on EXFOR:
Results: Reactions: 35 Datasets: 62
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for Thermal Neutrons

NUCLEAR SCIENCE AND ENGINEERING: 53, 1-8 (1974)

H. M. Eiland and G. J. Kirouac

TABLEI I‘I\II,Cl, vl Voo

Isotopic Composition of Nickel Source Material ’_08

Nickel Experiment I Experiment II |5 derived

Mass Atom % Atom %

Number Abundance Abundance
58 98.69 .71 >ross sections for
59 1.02 95.31 e not possible as
60 0.274 0.86 -
61 0.005 0.03 1 isotopes. In the
62 0.010 0.07 andey Phys. Rev. C 99, 014611
64 0.004 ~3mg 0.02
- X
“ ¥ ca. 1974: ' Commercial Oak Ridge

1975HAXU

over the past bU yi (w. isotope separation/Leon Love)

13875002 [3}

3875003 [3]


https://doi.org/10.1103/PhysRevC.105.044608

An incomplete list of rare/radioactive samples of interest to be fabricated
into thin targets for use in (n,z) measurements:

'Be (T,/, ~ 53 d)

26A] (T, /,~ 720 ky)

36C| (T,/, ~ 300 ky)

“Ti (T, ~ 60Y)

4BV (T,,~ 16 d), %V (T,,~ 330 d), 5OV

55Fe (T1,~2.7 y)

>%Co (Ty/,~ 77 d), >’Co (T, ~ 270 d)

*Ni (Ty/, ~ 6 d), >’Ni (T, ~ 36 h), **Ni (T,/, ~ 100K years)
BAs (Ty/, ~ 80d), "*As (T, ~ 18 d)

~ug quantities needed

-> typ. 100s of mCis — Ci
activities for isotopes with
~day long half lives

Commercial options sometimes exist for rare isotopes or very long-lived radioisotopes, including on the
NIDC website

However, options for purity of sample may be limited and could require further processing. Each case is
different, no standard minimum purity.
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NIDC:

Radioisotope
Half-Life/Daughter
Decay

Chemical Form
Radionuclidic Purity
Production Route
Processing

Primary Container
Availability

Unit of Sale

V-48 Radioisotope

15.9735 days to titanium-48 Half-Life/Daughter

Decay Radiation Information (NNDC) Decay

Vanadium in 0.1 N HCI Chemical Form

>99.5% (at time of shipment) +— 4'9V ? by m a SS ?

Activity Concentration

. - . Radionuclidic Purity
Proton irradiation of ™Ti
Production Route
Dissolution and ion chromatography

0y > Sly?

50V
>21E+17y
0.250%
£=92.90%
B <7.10%

Processing
Screw cap plastic via

Special order

Millicuries

LIAL
STABLE

49Ti
STABLE

48Ti
STABLE
7.44% 73.72% 5.41%

As-73

80.30 days to germanium-73

Decay Radiation Information (NNDC)
Arsenic (V) in 0.1 N HCI

>18.5 MBg/mL (>0.5 mCi/mL)

>99% (exclusive of As-74) €———
Proton bombardment of germanium target
Dissolution and distillation

Crimp-seal glass vial

Stock

Millicuries

To understand the isotope production/target fab. R&D needs for a given experiment, it would be very beneficial
to have references provided about the production route and the expected processing that is considered “state of
the art”

This would allow for a better estimate and more confidence in not just the quoted radionuclidic purity but to be
able to estimate and assess expected stable contaminants.

For short-lived radionuclides, need to streamline and optimize the process to the final target form factor
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Summary

« LANSCE with WNR/Lujan neutron sources and the Isotope Production Facility provides
a world-unique capability to perform neutron-induced nuclear reaction studies directly

over a broad energy range on “short-lived” radioactive nuclei.

« Opportunities for collaboration that benefit multiple programs:
— Direct measurements on [radioactive, rare, or isotopically enriched] nuclei, at neutron
energies where no data exists
— Validation of charged particle evaluations and models for isotope production

— Advancing chemistry and target fabrication techniques and training for versatility in
producing different final products for a broad scientific community.

» Improved interdisciplinary training (and recruitment/retention) in isotope production and
target fabrication, neutron transport, and in nuclear science measurements are key in
progressing these capabilities.

* Customer vs Collaborator
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