

Target needs for neutron-induced chargedparticle reactions at LANSCE

Sean A. Kuvin Los Alamos National Laboratory

Feb 28th 2024

LA-UR-24-21748

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA

2/27/24 1

In general: Isotope production and/or separation, target fabrication, characterization

- For (n,z) measurements need relatively thin (typ. ~1 ug/cm² to 1 mg/cm²), with uniform deposition area (or selfsupported targets always ideal). Becomes more challenging when fabricating radioactive or rare isotope targets due to the need for efficient chemistry and deposition methods.
- Exploring a variety of techniques such as thermal evaporation, microjet printing, electro-spraying, electrodeposition, *etc.*, with the Isotope Team at LANL (V. Mocko, C.E. Vermeulen), K. Manukyan at Notre Dame, S. Essenmacher (from MSU, now at LANL)...
- Not just fabricating the targets, but need to characterize mass, uniformity, purity, etc.

S. Dede, K. Manukyan *et al. Nucl inst. Methods in PR.A* <u>Volume 1055</u>, October 2023, 168472

Microjet printing, included in the thesis work by S. Essenmacher (MSU), publication in preparation

Measurement of ⁵⁶Ni(n,z) at WNR with a radioactive target from the Isotope Production Facility (IPF) and the Hot-Cell Facility (LANL LDRD)

- Production of ${}^{56}Ni$ (T_{1/2} ~ 6 days) tested at multiple beam energies to optimize purity
- Optimization of chemical separation and target fabrication inside hot-cell
- Significant coordination required between start of experiment (alignment and background measurements initiated at WNR, simultaneously with the start of ⁵⁶Ni production at IPF)
- Any time lost means less ⁵⁶Ni and the build up of impurities prior to neutron beam on target

Ni56 5.9 d	Ni 57 35.6 h	Ni58 68.1	Ni59 _{7.6e4} a	Ni60 26.2	Ni61 1.14
٤ 🔶	ε, β [‡]		ε, β+		
Co55 17.53 h β ⁺	Co56 77.3 d ε, β ⁺	Co57 271.8 d ε	C0 <mark>58</mark> 9.1 h 70.9 d IT ε, β⁺	C <mark>o59</mark> 100	<mark>Co</mark> 60 10.5 m 5.3 a β ⁺ γ β ⁺ γ

⁵⁹Co (p, 4n) ⁵⁶Ni ⁵⁹Co (p, 3n) ⁵⁷Ni

Test Production of ⁵⁶Ni and ⁵⁹Ni at IPF and UW Madison:

I: 92 MeV, II: 44-64 MeV, III: 22-31 MeV, IV: 0-10 MeV

Isolation of ⁵⁶Ni from irradiated Cobalt Targets

59 Co(p, 4n) 56 Ni, t_{1/2} = 6.075 days 45.8 g Co metal

Dissolution

Distillation

Co removal – 6 column in parallel in 2 hot cells

Residue after first separation

Slide reproduced from V. Mocko (LANL) WANDA 2022

2/27/24 5

Gas production on long-lived radioactive ⁵⁹Ni

- A well-known case of a long-lived radioisotope of nickel that can build up from ⁵⁸Ni(n,g) in typ. reactors and from ⁶⁰Ni(n,2n) in fusion environments
- Long half-life (~100k years) and large positive Q-values (+ 5.1 MeV for ⁵⁹Ni(n,a) and +1.9 MeV for ⁵⁹Ni(n,p)) can make it a sig. driver of further energy production
- Background reaction for our study of ⁵⁶Ni but reported ⁵⁹Ni(n,p) and ⁵⁹Ni(n,a) cross sections up to ~ 10 MeV: <u>https://doi.org/10.1103/PhysRevC.105.044608</u>
- Only other available data in EXFOR at fusion energies of interest was derived using an indirect surrogate ratio method, for which the authors stated:

A search for ⁵⁹Ni(n,*) on EXFOR: Results: Reactions: 35 Datasets: 62 Direct experimental measurements of cross sections for unstable long-lived radionuclide (⁵⁹Ni) are not possible as it does not occur in naturally available Ni isotopes. In the J. Pandey Phys. Rev. C 99, 014611

▲○ 30) 🗓 🔎 28-NI-59(N,TOT),,SIG C4: MF=3 MT=1 48 + i X4 X4+± CSV)+ T4 Cov 1976 J.A.Harvey+ 1.98e0 2.02e5 2709 + P,ORNL-5137,2,197605 49 • i X4 X4+± CSV)+ T4 Cov 10680010 [3] 5.92e-3 2.11e5 1401 50 + i X4 X4+ ± CSV)+ T4 Cov 1975 S.Raman+ 3.29e-1 1.48e5 1954 + P.ORNL-5025,110,197505 13774002 [3] 51 + i X4 X4+± CSV)+ T4 Cov 2.43e-1 1.55e4 713 13774003 [3] 52 + i X4 X4+± CSV)+ T4 Cov 5.35el 4.95e2 387 13774004 [3] 53 + i X4 X4+± CSV)+ T4 Cov 1975 J.A.Harvey+ 4.59e0 2.19e5 3404 + J, BAP, 20, 1195 (EE6), 197509 13775002 [3] 1975HAXU 54 + 1 X4 X4+± CSV)+ T4 Cov 4.39e1 2.19e5 3864 13775003 3 1975HAX 55 + i X4 X4+± CSV)+ T4 Cov 1975 J.A.Harvey 6.62e-3 1.48e5 1552 + W.HARVEY, 1975 13875002 [3] + i X4 X4+ ± CSV)+ T4 Cov 6.62e-3 1.48e5 1470

Direct measurements at LANSCE, n_TOF, ORELA over the past 50 years

Gas production on long-lived radioactive ⁵⁹Ni

- A well-known case of a long Measurements of the ⁵⁹Ni(*n*, *Q*) Cross Section ⁵⁸Ni(n,g) in typ. reactors and for Thermal Neutrons
- Long half-life (~100k years) and +1.9 MeV for ⁵⁹Ni(n,p))
- Background reaction for our sections up to ~ 10 MeV: <u>htt</u>
- Only other available data in using an indirect surrogate reasonable

A search for ⁵⁹Ni(n,*) on EXFOR: Results: Reactions: 35 Datasets: 62

- (50) - 20-NI-55(N, 101),, 516 C4. ME-5 MI-A Op-	~				
Quantity: [CS] Cross section					
48 📄 🔸 i X4 X4+± CSV)+ T4 Cov 1976 J.A.Harvey+	1.98e0	2.02e5	2709	+ P,ORNL-5137,2,197605	
49 + i X4 X4+± CSV)+ T4 Cov	5.92e-3	2.11e5	1401		
50 + i X4 X4+± CSV)+ T4 Cov 1975 S.Raman+	3.29e-1	1.48e5	1954	+ P,ORNL-5025,110,197505	137
51 + i X4 X4+ ± CSV)+ T4 Cov	2.43e-1	1.55e4	713		137
52	5.35el	4.95e2	387		137
53 + i X4 X4+± CSV)+ T4 Cov 1975 J.A.Harvey+	4.59e0	2.19e5	3404	+ J, BAP, 20, 1195 (EE6), 197509	137750
54 + 1 X4 X4+± CSV)+ T4 Cov	4.39el	2.19e5	3864		137750
55 📄 + <u>i</u> X4 X4+± CSV)+ T4 Cov 1975 J.A.Harvey	6.62e-3	1.48e5	1552	+ W, HARVEY, 1975	138750
56 + i X4 X4+ ± CSV)+ T4 Cov	6.62e-3	1.48e5	1470		138750

80 Isotopic Composition of Nickel Source Material 3 derived Nickel Experiment I Experiment II Atom % Mass Atom % Number Abundance Abundance cross sections for 58 98.69 3.71 59 1.02 95.31 e not possible as 60 0.2740.86 i isotopes. In the 61 0.005 0.03 62 0.010 0.07 andey Phys. Rev. C 99, 014611 64 0.004 ~3mg 0.02 **Oak Ridge** ca. 1974: Commercial over the past 50 y (w. isotope separation/Leon Love) 03 [3] 1975HAXU

An incomplete list of rare/radioactive samples of interest to be fabricated into thin targets for use in (n,z) measurements:

```
<sup>7</sup>Be (T_{1/2} \sim 53 \text{ d})

<sup>26</sup>Al (T_{1/2} \sim 720 \text{ ky})

<sup>36</sup>Cl (T_{1/2} \sim 300 \text{ ky})

<sup>44</sup>Ti (T_{1/2} \sim 60 \text{ y})

<sup>48</sup>V (T_{1/2} \sim 16 \text{ d}), <sup>49</sup>V (T_{1/2} \sim 330 \text{ d}), <sup>50</sup>V

<sup>55</sup>Fe (T_{1/2} \sim 2.7 \text{ y})

<sup>56</sup>Co (T_{1/2} \sim 77 \text{ d}), <sup>57</sup>Co (T_{1/2} \sim 270 \text{ d})

<sup>56</sup>Ni (T_{1/2} \sim 6 \text{ d}), <sup>57</sup>Ni (T_{1/2} \sim 36 \text{ h}), <sup>59</sup>Ni (T_{1/2} \sim 100 \text{K years})

<sup>73</sup>As (T_{1/2} \sim 80 \text{ d}), <sup>74</sup>As (T_{1/2} \sim 18 \text{ d})
```

~ug quantities needed -> typ. 100s of mCis – Ci activities for isotopes with ~day long half lives

Commercial options sometimes exist for rare isotopes or very long-lived radioisotopes, including on the NIDC website

However, options for purity of sample may be limited and could require further processing. Each case is different, no standard minimum purity.

2/27/24 8

NIDC:

Radioisotope	V-48					Radioisotope	As-73
Half-Life/Daughter	15.9735 days to titanium-48					Half-Life/Daughter	80.30 days to germanium-73
Decay	Decay Radiation Information (NNDC)					Decay	Decay Radiation Information (NNDC)
Chemical Form	Vanadium in 0.1 N HCl					Chemical Form	Arsenic (V) in 0.1 N HCl
Radionuclidic Purity	>99.5% (at time of shipment) < 49V? by mass?			nass?	Activity Concentration	>18.5 MBq/mL (>0.5 mCi/mL)	
Production Route	Proton irradiation of ^{nat} Ti				Radionuclidic Purity	>99% (exclusive of As-74)	
Processing	Dissolution and ion chromatography $50V > 51V?$			⁵¹ V?	Production Route	Proton bombardment of germanium target	
Primary Container	Screw cap plastic y	rial				Processing	Dissolution and distillation
Availability	Special order	47V 32.6 min	48V 15.9735 d	49V 330 d	50V > 2.1E+17 v	51V ainer STABLE	Crimp-seal glass vial
Unit of Sale	Millicuries ε = 10	ε = 100.00%	ε = 100.00%	ε = 100.00%	0.250% ε ≈ 92.90%	99.750%	Stock
one of sale					β ⁻ < 7.10%		Millicuries
		46Ti STABLE 8.25%	47Ti STABLE 7.44%	48Ti STABLE 73.72%	49Ti STABLE 5.41%	50Ti STABLE 5.18%	

- To understand the isotope production/target fab. R&D needs for a given experiment, it would be very beneficial to have <u>references</u> provided about the production route and the expected processing that is considered "state of the art"
- This would allow for a better estimate and more confidence in not just the quoted radionuclidic purity but to be able to estimate and assess expected stable contaminants.

Summary

- LANSCE with WNR/Lujan neutron sources and the Isotope Production Facility provides a world-unique capability to perform neutron-induced nuclear reaction studies directly over a broad energy range on "short-lived" radioactive nuclei.
- Opportunities for collaboration that benefit multiple programs:
 - Direct measurements on [radioactive, rare, or isotopically enriched] nuclei, at neutron energies where no data exists
 - Validation of charged particle evaluations and models for isotope production
 - Advancing chemistry and target fabrication techniques and training for versatility in producing different final products for a broad scientific community.
- Improved interdisciplinary training (and recruitment/retention) in isotope production and target fabrication, neutron transport, and in nuclear science measurements are key in progressing these capabilities.
- Customer vs Collaborator

LOS Alamos