

Tritium-doped titanium foil production at CATS

Claus Müller-Gatermann Center for Accelerator Target Science

MOTIVATION

Needed for e.g. (t,p) reactions Emerging triton beams, but limited to stable targets Radioactive beams necessitate tritium targets

What are the constraints?

INVERSE KINEMATICS

Kinematic compression in inverse kinematics - resolution Strong angle dependence - broadening

HELIOS APPROACH

Measured quar	<u>ntities</u>
Flight time:	T _{flight} =T _{cvc}
Position:	z
Energy:	E _{lab}

Derived quantities	
Part. ID:	m/q
Energy:	E _{cm}
Angle:	$\theta_{\sf cm}$

B=2T	
------	--

Particle	T _{cyc} (ns)
р	34.2
³ He ²⁺	51.4
d, α	68.5
t	102.7

DEUTERIUM TARGETS

- Usually deuterated polyethylene C₂D₄
- "easy" to produce
- High hydrogen content
- Contaminant carbon has low Z (stopping power)
- Can be produced 20µg/cm² or thicker
- Will degrade in beam

Not available for tritium, problem of destruction

METAL HYDRIDES

- Storage of hydrogen in titanium, palladium, uranium ...
- TiH_x can reach x=2.0 with diffusion above 300° C
- Same process industrially used for recovery of tritium (e.g. Trisorber manifold based on uranium)
- Minimal energy loss (low Z, thin, compromise $1\mu m$ Ti)

Material is brittle after hydration (welding between frames)

EARLIER ATTEMPTS

- Sodern (France) not reaching necessary loadings of tritium
- One existing target traveling the world, but decaying
- Collaboration with Moravek (California) after several attempts successful with Deuterium surrogate
- Targets characterized with Helios, theoretical maximum loading
- No tritium targets

SETUP AT ANL

Small tube furnace with manifold for pumping, purging and hydrogen source Tests with Deuterium as a surrogate (temperature, exposition time, pressure)

CHARACTERIZATION WITH XRD

Small tube furnace with manifold for pumping, purging and hydrogen source Tests with Deuterium as a surrogate (temperature, exposition time, pressure)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Lisowski, W., Keim, E.G., Kaszkur, Z. et al. Anal Bioanal Chem **389**, 1489–1498 (2007).

CHARACTERIZATION WITH XRD

Powder diffractometry of standard (Moravek), blank, and deuterated titanium ^o

TRITIUM TARGETS

- 50Ci of tritium in a fume hood
- Similar parameters to D₂ test
- Dead volume can be reduced
- High loose contamination
 ~35Mdpm on frame
- Targets could be stacked to produce more at a time
- recovery necessary if demand indicates multiple repetitions

TRITIUM TARGETS

Interesting color change Characterization to be done by ion beam scattering

SUMMARY/OUTLOOK

- Tritiated titanium foils successfully produced
- Loading factor to be determined
- Difference between the targets (color change) to be understood
- Recycling and reduction of dead volume are options for the future

Experiments at ANL, FRIB and CERN are waiting for any tritiated target

Tritiated polyethylene development will continue for low Z beams

Thank you for your attention!

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility. Work performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, was supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

RGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

