

Fusion-Relevant Light Element Nuclear Data Evaluations

Workshop for Applied Nuclear Data Activities (WANDA 2024) **Neutronics Session**

M. Paris, G. Hale, L. Hlophe, A. Lovell & H. Sasaki Theoretical Division, T-2 Group, Los Alamos National Laboratory

2024-02-26

Outline

- What we do: R-matrix evaluation
- Evaluations
- Data generation/dissemination

Context

- Cross section evaluation working group (CSEWG)
 - Public Reusable (PuRe) research data
- Nuclear Data Interagency Working Group
 - SBEND Project
- Office of Science & Technology Programs (OSTP)
 - Nuclear Data for Fusion Roundtable (May 2023 meeting; Bahran's talk this AM)

Evaluation pipeline *How we do an R-matrix evaluation*

CODE implementation

- **1.EDAf90** code handles all types of data [*EXFOR/CSISRS; publications; priv. comm.*]
 - total, integrated, diff'l, unpolarized, *polarized*; photon, neutron- and CP-induced: (γ,X), (n,X), (p,X), (d,X), (t,X),...
- 2.EDAf90 handles all the compound system (here: ¹⁰Be) data *simultaneously*
- 3. Optimization over parameters simultaneously fits all the data with the same parameters
- 4. EDAf90 → ENDF-6 formatted ENDF/B libraries for processing to CE & MG libraries
- 5. Testing & evaluation by hand; future: automate

Applications (*i.e.*, codes) need information that's:

- Accurate (consistent with observed data)
- Precise (uncertainties quantified)
- Comprehensive (energies, data types)
- Compact
- Format agnostic
- Smooth (differentiable)

We need to put these:

Applications (*i.e.*, codes) need information that's:

0.5

0.45 0.4 Negret (2022) - y

5.8

6

6.2 6.4

- Accurate (consistent with observed data)
- Precise (uncertainties quantified)
- Comprehensive (energies, data types)
- Compact
- Format agnostic
- Smooth (differentiable)

Applications (*i.e.*, codes) need information that's:

- Accurate (consistent with observed data)
- Precise (uncertainties quantified)
- Comprehensive (energies, data types)
- Compact
- Format agnostic
- Smooth (differentiable)

Applications (*i.e.*, codes) need information that's:

- Accurate (consistent with observed data)
- Precise (uncertainties quantified)
- Comprehensive (energies, data types)
- Format agnostic
- Smooth (differentiable)
- Compact format

Into something like this (ENDF/B): <u>Applications (*i.e.*, codes) need information that's:</u> - Accurate (consistent with observed data) 0 1.003000+3 3.96713130 0 131 2151 - Precise (uncertainties quantified) 1.003000+3 1.000000+0 0 131 2151 1.000000+0 7.000000+6 1 131 2151 0.00000+0 0.00000+0 131 2151 - Comprehensive (energies, data types) 0.00000+0 0.00000+0 24 131 2151 1.99625582 2.98959610 1.000000+0 5.000000-1 131 2151 - Format agnostic 0.00000+0 131 2151 1.000000+0 5.000000-1 0.000000+0 131 2151 3.96713130 50 17589245.6 1 131 2151 - Smooth (differentiable) 1.500000+0 24 4 131 2151 1.000000+0 0.000000+0 1.500000+0-2.786400-1 5.100000+0 5.100000+0 131 2151 1.000000+0 2.000000+0 1.500000+0 0.000000+0 5.100000+0 5.100000+0 131 - Compact format 1.000000+0 2.000000+0 5.000000-1 0.000000+0 5.100000+0 5.100000+0 131 2151 2.000000+0 2.000000+0 5.000000-1-5.570000-1 3.000000+0 3.000000+0 131 2151 0.00000+0 0.000000+0 2 12 2 131 2151 We need to put these: 0.45 Nearet (2022 12967.2935 7421.20304 0.000000+0 0.000000+0 215.121811 0.000000+0 131 2151 0.45996159.03 374.041394 0.000000+0 0.000000+0 1175.097380.000000+0 2151 131 ${^{3}H(t,2n)}^{4}He$ E_{t lab} = 0.5 MeV 5.000000-1 1.000000+0 0 18 3 131 2151 1.000000+0 2.000000+0 1.500000+0-1.000000+0 5.100000+0 5.100000+0 131 2151 000000+0 0.000000+0 5.000000-1-1.000000+0 5.100000+0 5.100000+0 131 2151 n-5He 3/2 2.000000+0 0.000000+0 5.000000-1-1.000000+0 3.000000+0 3.000000+0 131 2151 n-5He* 1/2 0.00000+0 0.000000+0 0 6 1 131 2151 (nn)-4He Total Wong (1965) Yield (MeV^{-1}) $T(d,\gamma_{tot})/T(d,n)$ Branching Ratio 10 0.001 ENDF/B VIII.0 (EDA R-matri this work Prusachenko et al. (2022) 10 Robb et al. (1970) Kerr et al. (1968) Walton et al. (1957) $d\sigma/d\Omega_{c.m.}$ (b/sr) 10 Bonner et al. 0 0.0001 Branching Ratio 10^{-3} 10 BR Kammeraad 10-5 Morgan Meanev 10⁻⁵⊧ Mohamed Buss 120 60 60 Kim Parker Angle (degrees) Angle (d Jeet Kosiara 10^{-6} Balbes 1.0 2.0 3.0 4 (Cecil 10-6 Center of Mass Energy (MeV) 0.01 0.1 10 E (MeV) 8

R-matrix formalism *Data generated, constraints & limitations*

- A "Solution" generates complete compound system data
 - T matrix \Rightarrow
 - Cross sections
 - Angular distributions
 - Polarization observables
 - All observables A(z₁,z₂)B
 - Parameter covariance matrix
 - Sensitivities
- Constraints/limitations
 - Need the observed data
 - Cross section, angular distributions, *polarization information*
 - With good kinematical coverage; shapeconsistent with datasets from other experiments

uncertainties

- "High" energies \geq 14.1 MeV neutrons
 - Breakup reactions
 - And these are compound-system dependent
 - Large numbers of channels

Resonant model for breakup

How we solve the high-energy problem

Resonant model for breakup

How we solve the high-energy problem

- Applications
 - ${}^{3}H(d,n\gamma){}^{4}He$
 - ${}^{3}H(t,2n){}^{4}He$

SPECT code calculation

- Employs Faddeev-like resonance model
- Relativistic kinematics necessary for γ production

LANL light-element program

- All compound systems A<20 (and a few above)
- Recent work:

Projectile\Target	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	$^{3}\mathrm{H}$	³ He	⁴ He	⁶ Li	⁷ Li
n	2020	VIII.0	VIII.0	VIII.0	VIII.0	2020	VIII.0
p	2020	VIII.0	VIII.0	VIII.0	2020	VIII.0	VIII.0
d		VIII.0	VIII.0	2020	$VIII.0^{a}$	VIII.0	VIII.0
t			VIII.0	VIII.0	2020	VIII.0	TENDL09
$h(^{3}\text{He})$				VIII.0	VIII.0	VIII.0	TENDL09
α					VIII.0	TENDL09	TENDL09
¹¹ B (α + ⁷ Li, α + ⁷ Li [*] ,	t+ ⁸ Be, r	$(1+^{10}B); ^{11}C$	$C(\alpha + ^{7}Be,$	p+ ¹⁰ B)	• ~30 Co	ompound sys	stems
$^{13}C(n+^{12}C, n+^{12}C^*)$					- not all shown		
$^{14}C (n+^{13}C)$					• ~100 F	Ceactions	
$^{15}N (p+^{14}C, n+^{14}N, $	α + ¹¹ B)						
¹⁶ O (g+ ¹⁶ O, α + ¹² C)							
¹⁷ O (n+ ¹⁶ O, α + ¹³ C)							
18 Ne (p+ 17 F, p+ 17 F*	$, \alpha + {}^{14}O)$						

R-matrix evaluation status

Materials of interest for fusion neutronics

- Lowest *n* breakup thresholds
 - Target material
 - Products
 - Neutron threshold energy
 - Maximum energy in our current EDA evaluations
- Negative threshold denotes exothermic (Q > 0) reaction
- Maximum evaluation energy is usually lower than the breakup threshold
 - If not, we've started to push into the breakup region

Material	Products	$E_{n,\text{thr}}$ (MeV)	$E_{n,\max}^{\text{EDA}}$ (MeV)
$n+^{2}\mathrm{H}$	2np	3.34	3.0
$n+{}^{3}\mathrm{H}$	2nd	8.35	10.5
$n + {}^{6}\text{Li}$	ndlpha	1.72	7.0
$n+^{7}\mathrm{Li}$	ntlpha	2.82	NA
$n+^7\mathrm{Be}$	ptlpha	0.94	1.4
$n+{}^{9}\mathrm{Be}$	2n2lpha	1.75	5.0
$n+^{10}B$	t2lpha	-0.32	1.1
$n+^{11}B$	$n \alpha^7 \text{Li}$	9.46	NA
$n+^{12}C$	n3lpha	7.89	10.0
$n+^{13}C$	$2n^{12}\mathrm{C}$	5.33	11.0
$n+^{13}N$	$np^{12}C$	2.09	NA
$n+^{14}N$	$np^{13}C$	8.09	2.5
$n + {}^{16}O$	$n\alpha^{12}C$	7.61	8.0

• Much of our current effort is focused on pushing the maximum energy of the evaluation $E_{n,max}^{EDA}$ to energies higher than those show here with > 14.1 MeV being the target.

SBEND Collaboration (BNL/LANL/LLNL)

Priority evalations

• Materials of interest

- First priority
 - H, C, N, O
- Follow-up
 - He, Li, Be, B

- Elemental processes of interest
 - SBEND initial prioritization
 - subject to need
 - DOE/SC & NNSA motivation

Category	Material	SBEND Elements
Structural	Al, steel, AM material	H, C, N, O
Controlled substances	Conventional explosives, pharmaceuticals, chemical agents, SNM	H, C, N, O, F, P
Intervening (shielding)	Poly, H_2O , <i>n</i> abs, Pb, W	H, Li, Be, B, C, O
Detector	Org & inorg scint, semicon, housings, PMT	He, He, C, O
Source	Detector housing, source reactions	Li, Be

Priority evaluations	DOE-SC user interest	NNSA user interest
1 H $(n, n)^{1}$ H; 1 H $(n, \gamma)^{2}$ H;	Reference/monitor cross section;	Reference/monitor for various
$^{2}\mathrm{H}(\gamma,n)^{1}\mathrm{H}$	BBN	actinides, $e.g.^{235}$ U (n, f) ;
		Non-proliferation/interrogation
⁶ Li $(d, \alpha)^4$ He; ⁷ Li $(p, \gamma/\gamma^*)^8$ Be	BSM physics; BBN	Nuclear security
$^{12}C(n, n'\gamma)^{12}C; ^{12}C(\alpha, \gamma)^{16}O;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{12}C(\alpha, \alpha'\gamma)^{12}C$	structure	non-proliferation/interrogation
¹³ C(α, γ) ¹⁷ O; ¹³ C(α, γ) ¹⁶ O;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$1^{13}C(\alpha, \alpha'\gamma)^{13}C$	structure; Neutrino-detection	non-proliferation/interrogation
	backgrounds	
¹⁴ N (n, n) ¹⁴ N; ¹⁴ N (n, p) ¹⁴ C;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{14}N(n, \alpha)^{11}B; ^{14}N(n, n'\gamma)^{14}N$	structure	non-proliferation/interrogation
$^{15}N(n, n'\gamma)^{15}N;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
15 N $(p, \alpha' \gamma)^{12}$ C;	structure	non-proliferation/interrogation
¹⁶ O(n, α) ¹³ C; ¹⁶ O(γ^*, α) ¹² C;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$ {}^{16}\mathrm{O}(n,n'){}^{16}\mathrm{O}^*;$	structure; Neutrino-detection	non-proliferation/interrogation
$^{16}O(n, n'\gamma)^{16}O;$	backgrounds	

SBEND Collaboration (BNL/LANL/LLNL)

Priority evalations

• Materials of interest	Category	Material		SBEND Elements
- First priority	Structural	Al, steel, AM material		H, C, N, O
 H, C, N, O Follow-up 	Controlled substances	Conventional explosives, pharmaceuticals, chemical agents, SNM		H, C, N, O, F, P
■ He, Li, Be, B	Intervening (shielding)	Poly, H_2O , <i>n</i> abs, Pb, W	1	H, Li, Be, B, C, O
	Detector	Org & inorg scint PMT		He, He, C, O
	Source	· ritits		Li, Be
		ar1011		
• Elemental processes of interest	Priority enance VOUR	DBN	NNSA Refere actinid	user interest nce/monitor for various les, $e.g.^{235}U(n, f)$; roliferation/interrogation
- SBEND ini	$p, \gamma/\gamma^*)^{8}$ Be	BSM physics; BBN	Nuclea	ar security
prioritization Tell	γ) ¹² C; ¹² C(α, γ) ¹⁶ O; C($\alpha, \alpha' \gamma$) ¹² C	Stellar nucleosynthesis; nuclear structure	Second non-pr	dary γ -rays oliferation/interrogation
 subject to ne DOE/SC & NNSA motivation 	$\begin{bmatrix} {}^{13}C(\alpha,\gamma){}^{17}O; {}^{13}C(\alpha,\gamma){}^{16}O; \\ {}^{13}C(\alpha,\alpha'\gamma){}^{13}C \end{bmatrix}$	Stellar nucleosynthesis; nuclear structure; Neutrino-detectionSecond non-prbackgrounds		dary γ -rays oliferation/interrogation
motivation	$\frac{^{14}\mathrm{N}(n,n)^{14}\mathrm{N}; ^{14}\mathrm{N}(n,p)^{14}\mathrm{C};}{^{14}\mathrm{N}(n,\alpha)^{11}\mathrm{B}; ^{14}\mathrm{N}(n,n'\gamma)^{14}\mathrm{N}}$	Stellar nucleosynthesis; nuclearSeconstructurestructurenon-tion		dary γ -rays oliferation/interrogation
	$ \begin{array}{c} {}^{15}\mathrm{N}(n,n'\gamma){}^{15}\mathrm{N};\\ {}^{15}\mathrm{N}(p,\alpha'\gamma){}^{12}\mathrm{C}; \end{array} $	Stellar nucleosynthesis; nuclear Seconstructure non-		dary γ -rays oliferation/interrogation
	$ \begin{array}{c} {}^{16}{\rm O}(n,\alpha)^{13}{\rm C};{}^{16}{\rm O}(\gamma^*,\alpha)^{12}{\rm C};\\ {}^{16}{\rm O}(n,n')^{16}{\rm O}^*;\\ {}^{16}{\rm O}(n,n'\gamma)^{16}{\rm O}; \end{array} $	Stellar nucleosynthesis; nuclear structure; Neutrino-detection backgrounds	Second non-pr	dary γ -rays oliferation/interrogation

Thanks in advance for your questions & support

n+⁶Li

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VIII.0
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (accepted for ENDF/B-VIII.1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ⁶Li(n,n'd)⁴He spectra

n+⁶Li *R-matrix evaluation update/extension*

- Previous evaluation ENDF/B-VIII.0
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (accepted for ENDF/B-VIII.1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ⁶Li(n,n'd)⁴He spectra

n+⁶Li

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VIII.0
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t^{4} He, n^{+6} Li, $n+6Li^{*}(3^{+}; 2.19 \text{ MeV}), d+5He^{*}(3/2^{-})$
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF= $4 \rightarrow MF=6$; MT=24 \rightarrow 41 (n,2np)
- Updated evaluation (accepted for ENDF/B-VIII.1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}\text{Li}(n,n'd){}^{4}\text{He spectra}$

calculated at E= 5.150 li6(n,n1)li6*: Batchelor, NP 47,385 (1963) 5.15 MeV 10⁻² 10⁻³ 0 30 60 90 120 150 180 $\boldsymbol{\theta}_{\mathsf{CM}}$ li6(n,n)li6^{*} d σ /d Ω E= 7.500 MeV 22 *10⁻³ calculated at E= 7.500 20 li6(n,n1)li6*:J,NP/A,107,139,1968:J.C.Hopkins+ 18 16 င) တျာ/တp 12 10 8 6 4 30 60 90 120 150 0 180

 $\boldsymbol{\theta}_{\text{CM}}$

li6(n,n)li6* d σ /d Ω E= 5.150 MeV

do/dΩ

n+⁹Be

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

10⁻⁸

X

×

0

Δ

+ ×

 \diamond

10⁻⁷

σ (barns)

R-matrix evaluation update/extension

ENDF/B-VIII.0

ENDF/B-VIII.1 Conneely (1986)

Firestone (2016)

Wallner (2019)

Shibata (1992)

25 keV MACS

10⁻⁶

10⁻⁵

10⁻⁴

E (MeV)

Marin-Lambarri (2020)

- Added ${}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}$ evaluation
- (new evaluation work on (n,el), (n,inl), (n,α) will hold for ENDF/B-IX.0 when (n,2nα) is re-evaluated

	Improved perf. on FLATTOP				
, (n,inl), (n, α) will	ENDF/B	VIII.0	VIII.1		
$(1,2n\alpha)$ is re-evaluated)	C/E	0.134	0.919		
		E $\sigma_{(n,\gamma)}$ 0.0253 eV 8.49 0.0253 eV 9.70 0.0253 eV 8.27 0.0253 eV 8.27 0.0253 eV 8.31 15.0 keV 15.81 30.0 keV 13.00 55.0 keV 9.79 27.8 keV 10.44 473 keV 8.4 500 keV 12.02 622 keV 94.80 • [75] Conneely • • [76] Shibata (1 • • [77] Firestone • • [78] Wallner (2 • • [79] Marin-Lat	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

n+¹⁶O Evaluation adjustment for ${}^{16}O(n, \alpha_i){}^{13}C^*$

- Abbreviated history
 - concern that ${}^{16}O(n, \alpha){}^{13}C$ absorption in ENDF/B-VIII.0 too large
 - LANL/EDA R-matrix fit considers $E_n \leq 7.0 \text{ MeV}$
 - Excited states $E_n > 5.6 \text{ MeV}$
- New data
 - supports ENDF/B-VIII.0 to 7.0 MeV
 - Prusachenko et al. IPPE 2022
 - H.-Y. Lee, S. Kuvin, et al. 2023
- Implement reduction in (n, α_i)
 - -i = 1,2,3 ↔ MT = 801,802,803
 - reduced by factor of 2 to agree with Davis

$^{A}Z_{i} J^{\pi}$	$E_x(^{13}\mathrm{C})$ (MeV)	$Q_{n\alpha_i}$ (MeV)	E_n (MeV)
$^{13}C_0 \frac{1}{2}^-$	0.0	-2.215	2.355
${}^{13}C_1 \ \overline{\frac{1}{2}}^+$	3.08944	-5.304	5.639
${}^{13}\mathrm{C}_2 \ {\bar{3}}{\bar{2}}^-$	3.68451	-5.899	6.271
${}^{13}C_{3}\bar{5}^{+}$	3.85381	-6.068	6.451
$^{13}C_{4}^{\bar{5}+}$	6.864	-9.079	9.651

n+¹⁶O Evaluation adjustment for ${}^{16}O(n, \alpha_i){}^{13}C^*$

- Abbreviated history
 - concern that ${}^{16}O(n, \alpha){}^{13}C$ absorption in ENDF/B-VIII.0 too large
 - LANL/EDA R-matrix fit considers $E_n \leq 7.0 \text{ MeV}$
 - Excited states $E_n > 5.6$ MeV
- New data
 - supports ENDF/B-VIII.0 to 7.0 MeV
 - Prusachenko et al. IPPE 2022
 - H.-Y. Lee, S. Kuvin, G. Hale, MP, ...
 PRC 109, 014601 (2024)
- Implement reduction in (n, α_i)
 - -i = 1,2,3 ↔ MT = 801,802,803
 - reduced by factor of 2 to agree with Davis

$^{A}Z_{i} J^{\pi}$	$E_x(^{13}\mathrm{C})$ (MeV)	$Q_{n\alpha_i}$ (MeV)	E_n (MeV)
$^{13}C_0 \frac{1}{2}^{-}$	0.0	-2.215	2.355
${}^{13}C_1 \ \overline{\frac{1}{2}}^+$	3.08944	-5.304	5.639
${}^{13}\text{C}_2 \ \overline{3}^2$	3.68451	-5.899	6.271
${}^{13}\mathrm{C}_3 \ \overline{\frac{5}{2}}^+$	3.85381	-6.068	6.451
$^{13}C_4 \frac{5}{2}^+$	6.864	-9.079	9.651

