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In southern France, 35 nations™ are collaborating to build the world's

largest tokamak, a magnetic fusion device that has been designed to
IT E R prove the feasibility of fusion as a large-scale and carbon-free source of
enerqgy based on the same principle that powers our Sun and stars.

* ITER ("The Way" in Latin) is
one of the most ambitious
energy projects in the world
today.

* The experimental campaign
that will be carried out at ITER
IS crucial to advancing fusion
science and preparing the way
for the fusion power plants of
tomorrow.
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Text and pictures taken from www.iter.org
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More pictures...
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More pictures.
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THE ITER TOKAMAK

The tokamak is an éxperimental machine designed to harness the energy of fusion. ITER
will be the world's largest tokamak, with a plasmatadius (R) of 6.2 m and a plasma
volume of 840 m3.
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Some pictures of my own tour to ITER
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Pictures courtesy of G. Nobre



Some pictures of my own tour to ITER
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LOOking into 8000.
the details... |-

840.

Plasma volume
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: VACUUM VESSEL

The stainless steel vacuum vessel houses the fusion reactions and acts as a first safety
containment barrier.

Plasma major radius (6.2 m)
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Looking into
the detalils...

{+ [dentifying materials |
relevant to neutronics
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8000.

Steel plasma chamber

840.

Plasma volume

6.

Plasma major radius (6.2 m)

VACUUM VESSEL

The stainless steel vacuum vessel houses the fusion reactions and acts as a first safety
containment barrier.
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the details... |-

840.

Plasma volume

2 Identlfylng materials |
relevant to neutronics

L« Structural materials
.+ Stainless Steel |
* Various steel alloys |
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Plasma major radius (6.2 m)

VACUUM VESSEL

The stainless steel vacuum vessel houses the fusion reactions and acts as a first safety
containment barrier.
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LOOking into 8000.
the details... |-

840.

- Identifying materials
relevant to neutronics

B Structural materials
.« Stainless Steel

 Various steel alloys
have the same

elements in ,
different proportions |

Plasma volume

6.

Plasma major radius (6.2 m)

VACUUM VESSEL

The stainless steel vacuum vessel houses the fusion reactions and acts as a first safety
containment barrier.

© 100,000 KILOMETRES

100,000 kilometres of niobium-tin (Nb3Sn) superconducting strands
are necessary for ITER's toroidal field magnets. Fabricated by

PR Vet suppliers in six ITER Domestic Agencies—China, Europe, Japan,

Korea, Russia and the USA—production began in 2009 and ended in

2014. Over 400 tonnes of this multifilament wire has been produced for

ITER at a rate of about 150 tonnes/year, a spectacular increase

in worldwide production capacity (estimated, before the scale-up for

ITER, at a maximum of 15 tonnes/year). Stretched end to end,

k? Brookhaven the Nb3Sn strand produced for ITER would wrap around the Earth at

National Laboratory the equator twice.

magnets




Nuclei relevant for neutron transport and/or
activation at ITER (in our mass range)
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Nuclei relevant for neutron transport and/or

activation at ITER (in our mass range)
Fe, C, Mn, Ni, Cr, Mo, P, S, Si, Cu, Ta, Ti, B, Nb, Co, V, Al, Sn
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Nuclei relevant for neutron transport and/or

activation at ITER (in our mass range)
Fe, C, Mn, Ni, Cr, Mo, P, S, Si, Cu, Ta, Ti, B, Nb, Co, V, Al, Sn
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Nuclei relevant for neutron transport and/or
activation at ITER (in our mass range)

Fe, C, Mn, Ni, Cr, Mo, P, S, Si, Cu, Ta, Ti, B, Nb, Co, V, Al, Sn

~* Mostly structural
. materials!
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Nuclei relevant for neutron transport and/or

activation at ITER (in our mass range)
Fe, C, Mn, Ni, Cr, Mo, P, S, Si, Cu, Ta, Ti, B, Nb, Co, V, Al, Sn

"« Mostly structural
i" materials!

* Why are structural
materials used as

structural materials in
nuclear applications?
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| materials!
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Nuclei relevant for neutron transport and/or
activation at ITER (in our mass range)

Fe, C, Mn, Ni, Cr, Mo, P, S, Si, Cu, Ta, Ti, B, Nb, Co, V, Al, Sn

"« Mostly structural

* Why are structural
materials used as
structural materials in
nuclear applications?

. Or, why do people like

building stuff with this?
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Nuclear properties: S
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Nuclear properties: S

 On or near closed shells
* High neutron separation energy

.
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Nuclear properties: S

 On or near closed shells
* High neutron separation energy

* Very stable!

* Preferentially formed
materials
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Nuclear properties: S

 On or near closed shells
* High neutron separation energy

* Very stable!

* Preferentially formed
materials

e |deal to build .
stuff with! i
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Nuclear properties: S

 On or near closed shells
* High neutron separation energy

* Very stable!

* Preferentially formed 2 T
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2.77E+4 W 1.18E+4
2.62E+4 W 1.04E+4
2.48E+4 W 9.01E+3
2.34E+4 W 7.57E+3
2.19E+4 M 6.14E+3
2.05E+4 [ 4.70E+3
M 1.90E+4 = 3.26E+3
M 1.76E+4 1.82E+3
B 1.62E+4 3.88E+2
B 147E+4 -1.04E+3
B 1.33E+4 -2.48E+3
Il Unknown



Nuclear properties: S

 On or near closed shells
* High neutron separation energy

* Very stable! D

* Preferentially formed :
materials

* |deal to build . |
stuff with! I BT

is it challenging to |
| evaluate such nuclides? |

keV

2.77E+4 W 1.18E+4

2.62E+4 Ml 1.04E+4

2.48E+4 M 9.01E+3

2.34E+4 W 7.57E+3

2.19E+4 M 6.14E+3

2.05E+4 [ 4.70E+3
B 1.90E+4  3.26E+3 1
B 1.76E+4  1.82E+3 F
B 1.62E+4 3.88E+2
B 147E+4  -1.04E+3
B 1.33E+4 -2.48E+3

Il Unknown



Cross sections can be split in different regions

! 1
Typical evaluated
capture cross section
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Characterizing the different
energy regions

D — resonance spacing
I" — resonance width
AFE — experimental resolution

/- RRR:

* Resonances can be individually resolved
» Resonances parametrized individually (R-matrix)

 URR:

« Resonances cannot be experimentally resolved from one
another

 Description based on average cross sections and probability
distributions

e Fast:

* Resonances are so wide and so close together that they
average each other out

» Measured cross section is smooth

~

I
Q — small

(D

(I . AE .
~ 1;—— — big
(D)~ (D)

(I
D) — big

L National Laboratory
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Example of opposite case to the nuclei discussed here
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FIG. 1. Evaluated [21-26] and experimental ?*3(J inelastic scat-
tering cross section data [7,8,10-16]. The experimental data marked
with * have been corrected using model calculations.

Taken from Kerveno et al., PRC104, 044605 (2021)

» Fast neutron region starts at really low energies
* Cross sections are smooth down to very low energy
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Example of opposite case to the nuclei discussed here

» Fast neutron region starts at really low energies
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Example of opposite case to the nuclei discussed here
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» Fast neutron region starts at really low energies
* Cross sections are smooth down to very low energy
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level density!




Challenges for nuclei discussed here:

Low Nuclear Level Densitie

» For scattering off 238U:

©

« S0 many levels even at
“0” neutron energy

« Resonance region ends
at 20keV

Brookhaven

National Laboratory
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Challenges for nuclei discussed here:
Low Nuclear Level Densitie

» For scattering off 238U:

« S0 many levels even at
“0” neutron energy

« Resonance region ends
at 20keV

 For 52Cr;

« Even a few MeV above
“0” neutron energy
there’s a factor of 107
fewer levels in
compound nucleus

* Cross-section
fluctuations extend to
much higher energy
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Challenges for nuclei discussed nere:
Low Nuclear Level Densitie

» For scattering off 238U:

« S0 many levels even at
“0” neutron energy

« Resonance region ends
at 20keV

 For 52Cr;

« Even a few MeV above
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there’s a factor of 107
fewer levels in
compound nucleus

* Cross-section
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Challenges for nuclei discussed here:

« Fluctuatlons extend to very hlgh energles' ﬂ

1.5 |

>2Cr(n,inel)

—
o

Mihailescu, 2007
Van Patter, 1962 ~——=—
Fedorov, 1973 ——
Tagesen, 1966 ——
Lychagin, 1988 —=—
Current eval. ——
ENDF/B-VIII.O

Cross Section (b)

o
(3

2 4 6 8 10 12 14 16 18 20
Incident Neutron Energy (MeV)

~ g From latest ENDF/B chromium evaluation:
O Nuclear Data Sheets 173 (2021) 1-41




Challenges for nuclei discussed here:

si—_FIuctuations extend to very high energies! l

L Ik 52G¢(ninel)
W/ = it
o
c
8 1.0 §§
O
D
) Mihailescu, 2007
4 Van Patter, 1962 ——
= Fedorov, 1973 ——
© 05 Tagesen, 1966 ——
Lychagin, 1988 ~——=—
Current eval. ——
ENDF/B-VIII.0
2 4 6 8 10 12 14 16 18 20
Incident Neutron Energy (MeV)
~ g From latest ENDF/B chromium evaluation:
O Nuclear Data Sheets 173 (2021) 1-41

* No single approach is fully
applicable:

 Cannot use R-matrix like with
standalone resonances

» Cannot use probability
distributions as in URR

« Cannot simply use smooth
models from fast regions

 Delicate combination of approaches,
model and data

 E.g., not fully spherical nuclei, not
deformed: soft-rotor potentials
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Current status in ENDF/B library

Recently evaluated (VIIl.1)
Not-so recently evaluated (VI11.0)

Would benefit from additional
evaluation effort

Needing some crucial evaluation work
* Old evaluations, need new effort!
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Current status in ENDF/B I|brary

. Recently evaluated (VIIl.1)
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Current status In ENDFIB I|brary

. Recently evaluated (VIIl.1)
. Not-so recently evaluated (VIII.0)

.Would benefit from additional
evaluation effort

E Needing some crucial evaluation work
.Old evaluations, need new effort!
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Current status In ENDFIB I|brary
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What are neutron resonances, after all?
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