

f (O) lin

@BrookhavenLab

Gamma Rays Induced by Neutrons Year 3 Report

David Brown (National Nuclear Data Center, Brookhaven National Laboratory)

GRIN Collaboration:

E. Chimanski, E. Ricard, G. Nobre, S. Ota, C. Morse (BNL), A. Hurst, L. Bernstein (LBNL), C. Mattoon, B. Beck, G. Gert (LLNL), A. Lewis (UTK)

29 Feb 2024 WANDA 2024

Active interrogation with neutrons is common technique in many applications

- Inelastic (14 MeV) gammas are an obvious need
- Less obvious needs:
 - Capture gammas neutrons moderate in surrounding material
 - Decay gammas these are often background (but could be signal too)

The gamma data in ENDF is woefully deficient

Figure 1: The Bulk Elemental Compositional Analyzer (BECA) instrument proposed for a future NASA mission to Venus. From Fig 1. of [Parsons 2016].

GRIN is 3-year NA-22 project with these Intended Goals

For traditional user: just fix the ^%#@\$ evaluations

For event-by-event user (correlations!): need to rethink the API & what data we store in an evaluation

Either way, need to correctly model the reaction, incorporating all experimental knowledge

- Levels and gamma branching ratios in ENSDF
- Thermal gammas in ENSDF and/or EGAF
- Thermal capture cross sections in the Atlas of Neutron Resonances

And we need to test the final product!

Task list/Gannt chart

Independent review & revised LCP Now

	FY2022			2023			12024					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Support for gamma emission in traditional transport applications												
1.1: Update ENDF discrete level data in e.g. (n,n') with ENSDF [BNL, NNL]	* *			*								
1.2: Update ENDF capture γ data with ENSDF, modeling & CapGam data [BNL, NNL, IAEA], LBNL]	*			*		*		*		*		
1.3: Update existing GNDS (and ENDF if possible) formats to enable in-line gamma cascades as appropriate [BNL, LLNL]												
1.4: Extend MCGIDI to perform in-line gamma cascades [LLNL]			*									
Task 2: Support for e-by-e correlated emissions												
2.1: Assemble database of PSF and LD [BNL, LBNL, IAEA, NNL]		*		*								
2.2: Add support for PSF and LD in GNDS files [BNL, LLNL]												
2.3: Extend MCGIDI to model gamma emissions from the continuum [LLNL]							2			*		
Task 3: Integration and validation						-				10		
3.1: Update GEANT4 and Mercury to use latest MCGIDI [LLNL]					*							*
3.2: Validate project evaluations and coding using Baghdad Atlas and other benchmarks as identified [LBNL, NNL]												*
3.3: Develop validation benchmarks using data from FRM-II reactor & others, as identified [LBNL, NNL]												

Task list/Gannt chart

Independent review & revised LCP

\checkmark	′ done
\checkmark	′ part done,
Νοω	more to go

		FY2022			2023			72024					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Task 1: Support for gamma emission in traditional transport applications												
\checkmark	1.1: Update ENDF discrete level data in e.g. (n,n') with ENSDF [BNL, NNL]		*		*		*						
\checkmark	1.2: Update ENDF capture γ data with ENSDF, modeling & CapGam data [BNL, NNL, IAEA], LBNL]				*		*		*		*		*
\checkmark	1.3: Update existing GNDS (and ENDF if possible) formats to enable in-line gamma cascades as appropriate [BNL, LLNL]												
\checkmark	1.4: Extend MCGIDI to perform in-line gamma cascades [LLNL]			*									
	Task 2: Support for e-by-e correlated emissions												
\checkmark	2.1: Assemble database of PSF and LD [BNL, LBNL, IAEA, NNL]		*		*								
	2.2: Add support for PSF and LD in GNDS files [BNL, LLNL]												
	2.3: Extend MCGIDI to model gamma emissions from the continuum [LLNL]										*		
	Task 3: Integration and validation												
\checkmark	3.1: Update GEANT4 and Mercury to use latest MCGIDI [LLNL]					*							*
	3.2: Validate project evaluations and coding using Baghdad Atlas and other benchmarks as identified [LBNL, NNL]												*
	3.3: Develop validation benchmarks using data from FRM-II reactor & others, as identified [LBNL, NNL]												

Task 1: fixing the ^%#@\$ evaluations

Task 1: traditional user support *modeling and evaluation – evaluation status*

- ✓ H [OK]
- ✓ ¹²C [OK],¹³C [done FY24]
- ✓ ¹⁶O [done FY23], ^{17,18}O [to do]
- ✓ ¹⁹F [done FY23]
- ²⁸Si [done FY23], ²⁹⁻³²Si [in progress]
- ✓ ³²⁻³⁴S [done FY23],
- ⁵⁵Mn [OK (IAEA)], ⁵⁴Mn [to do]
- ²⁰⁸Pb [*in progress by RPI*], ²⁰⁴Pb [to do], ²⁰⁶Pb [to do], ²⁰⁷Pb [done by AL]
- ²³⁸U [OK (INDEN)], rest of U isotopes [to do]
- Next: N, Na, AI, Cu, Fe, W, Pu, He, Li, Be, B, CI, Cr, Ni, Ge, Br, Cd, I, Cs, La, Mg, P, Ar, K, Ca, Ti, As, Kr, Mo, Sn, Sb, Xe, Gd, Bi, Np, Np, Am

Isotope priority
First
Follow-up
Remaining

File	Inelastic	Capture	Status			
n-006_C_013.endf	BRs and energies updated.	Included from EGAF	ENDF/B-VIII.1β3			
n-008_O_016.endf	BRs and energies included	Updated: Primaries flagged	ENDF/B-VIII.1β3			
n-009_F_019.endf		Updated: Primaries flagged	ENDF/B-VIII.1β3			
n-014_Si_028.endf	BRs and energies updated	Updated: Primaries flagged	ENDF/B-VIII.1β3			
n-016_S_032.endf	BRs and energies updated	Formatting	ENDF/B-VIII.1β3			
n-016_S_033.endf	BR and energies updated	We need more data	ENDF/B-VIII.1β3			
n-016_S_034.endf	BRs and energies updated	We need more data	ENDF/B-VIII.1β3			

Outline of a typical fix

- Replace inelastic-like BR's with ENSDF if needed
- Replace thermal capture
 gammas with EGAF/ENSDF
- For RRR capture, either:
 - Replace RRR gammas with CN model or
 - Keep as all primary and extrapolate to higher energies
- Fixes made to GNDS files, translated back to ENDF
- Scheme coded in our *grin-formatter* code

All the processing pathways we consider

Task 2: enabling correlations

Task 2: event-by-event modeling support

- Trying to develop efficient e-by-e scheme:
- "Small" files
- Fast sampling
- Correct physics

Two approaches:

- 1. Two emissions in Continuum
- 2. All levels, all branching ratios

We must adopt approach #2

Approach #2 needs:

Simulated level scheme

- Population of all simulated levels
- Branching ratios from simulated levels

Task 3: making it all work

Task 3: Integration and validation

GIDI is now working as an event generator in GEANT4 using vanilla ENDF data, but in GNDS format

https://github.com/LLNL/gidiplus

Testing inline cascade & correlation capabilities using evaluated data files

Task 3: Integration and validation

The Baghdad IRT-M Reactor and (n, n'γ) data <u>https://nucleardata.berkeley.edu/atlas/</u>

rookhaven[.]

ational Laboratory

CoH vs. ENDF for ²⁸Si($n, n'\gamma$): 1779 keV

We are working hard to stand up a validation framework for outgoing gamma data

What next?

Involving students

Science Undergraduate Laboratory Internships (SULI)

Can we model/predict Primaries with ML?

Ana Pereira (FSU)

EGAF vs. RAINIER primary gammas

Theory **Converted Experimental**

Ayman Abdullah-Smoot (TSU)

Implementing GIDI & GRIN data in GEANT4

Michael Allen (TAMU), Mauricio Cerda (Texas Tech) & Andrea (BNL-Staff)

Two follow-on projects

- The Berkeley Atlas: A database of absolute cross sections for inelastic, gamma-ray production with 14 MeV neutrons
- Patrick Peplowski (Johns Hopkins University Applied Physics Laboratory)

- Development Of Benchmark Measurements For Capture Gamma Cascades
- Yaron Danon (Rensselaer Polytechnic University)

We are working hard to stand up a validation framework for outgoing gamma data, but this is a bigger job than GRIN can handle

Reports and codes

- Aaron M. Hurst et al., pyEGAF: An open-source Python library for the Evaluated Gamma-ray Activation File, Nucl. Instrum. Methods Phys. Res. Sect. A 1057, 168715 (2023); doi:10.1016/j.nima.2023.168715; URL <u>https://pypi.org/project/pyEGAF/</u>
- E. V. Chimanski, B. R. Beck, L. A. Bernstein, G. Gert, A. M. Hurst, A. M. Lewis, C. M. Mat- toon, E. A. McCutchan, C. Morse, G. Nobre, S. Ota, D. Brown, The current status of inelastic and capture gamma-ray production evaluations in translated ENDF-VIII.0 GNDS files and recommended remediation actions, Tech. Rep. BNL-224447-2023-INRE (2023). doi:10.2172/1983773. URL https://www.osti.gov/biblio/1983773
- E. V. Chimanski, B. Beck, G. Nobre, E. A. McCutchan, G. Gert, C. Morse, L. A. Bernstein, A. M. Hurst, A. M. Lewis, C. M. Mattoon, S. Ota and D. Brown, "A Precise Evaluation of Neutron Induced Gamma Ray Production: Upgrading ENDF, Formatting and Reaction Models", IEEE NSS-MIC-RTSD Conference, 5-12 Nov. 2022, Milan, Italy (2022).
- Aaron M. Hurst, for the GRIN collaboration, "Level density and photon strength function models and their adopted parametrizations for GRIN", LBNL Report LBNL-2001455 (2022)
- GIDIplus v3.25, LLNL Report LLNL-Code-778320 (2022)
- C. Mattoon, B. Beck and G. Gert, "Managing and Processing Nuclear Data Libraries with FUDGE", EPJ Web
 of Conferences 284, 14010 (2023), <u>https://doi.org/10.1051/epjconf/202328414010</u>
- A.M.Hurst, R.B. Firestone, E.V. Chimanski, pyEGAF: Modernization of the EGAF database, J. Radioanal. Nucl. Chem. (2024); doi:10.1007/s10967-023-09316-2
- 7 evaluations (to date) included in ENDF/B-VIII.1 beta libraries

