

Modern Structure-based Nuclear Data Evaluations for Basic Science, Nuclear Safety & Security

"SBEND: Structure-based Evaluation of Nuclear Data" BNL/LANL/LLNL DOE Collaboration

M. Paris (LANL/PI), D. Brown (BNL/co-PI), K. Kravvaris, I. Thompson (LLNL/co-PIs), G. Hale & A. Lovell (LANL/co-Invs)

Workshop for Applied Nuclear Data Activities (WANDA 2024) Project Overview Session

2024-02-29

LA-UR-24-21657

Outline: SBEND project overview

- Collaboration
- Collaborative work overview
- Recent results

The nuclear data cycle & SBEND

- Theory & evaluation (T&E) @ intersection
 - Observed differential, basic physics data
 - User needs/Applications
 - Basic science
 - Nuclear security
 - Nuclear energy
- T&E provides
 - <u>Overarching</u>: Technical/physics guidance
 - <u>Concrete</u>: Nuclear data parameters
 - Nuclear structure parameters
 - Smooth (differentiable) reaction cross section data
 - & these data should be <u>consistent</u>

SBEND Collaboration Project Overview

Collaboration Key personnel

- M. Paris (PI, LANL)
 - Staff scientist Theoretical Divison (T-2)
- D. Brown (co-PI, BNL)
 - Staff scientist Nucl. Science & Technology Dept.
- I. Thompson (co-PI, LLNL, Fellow APS/IoP)
 - Staff scientist Nuclear Data & Theory Group
- K. Kravvaris (co-PI, LLNL)
 - Staff scientist Nuclear Data & Theory Group
- G. Hale (co-Inv, LANL, Fellow APS)
 - Staff scientist T-Division (T-2)
- A. Lovell (co-Inv, LANL)
 - Staff scientist T-Division (T-2)
- L. Hlophe (MSU/FRIB visiting asst. prof.)
 - Joint position with LANL/T-2 (hired August '23)

Collaboration

Synergistic activities

- Experimentalist collaborators
 - Univ. Notre Dame: R.J. DeBoer, M. Wiescher, ...
 - Ohio Univ: C. Brune
 - LANL: M. Devlin, K. Kelly, S. Kuvin, H.Y. Lee, S. Paneru, ...
- <u>Recent hires</u>
 - Linda Hlophe (MSU/FRIB + LANL/T-2 joint position)
 - Hirokazu Sasaki (LANL/T-2 staff member)
- Graduate Student Employee
 - Joshua Adeleke (Ill. Inst. Tech, Physics & Math)
 - DOE Sustainable Research Pathways Program to build lasting collaborations
 - Summer 2024 project: applications of deep neural networks to light-element evaluation
- Skills transfer ("training") activities
 - Evaluation & data generation current efforts
 - Som Paneru (LANL/P-3; ⁸Be system evaluation)
 - Hirokazu Sasaki (LANL/T-2: ¹³C system evaluation)
 - Theory
 - Linda Hlophe: breakup reactions in *ab initio* & Faddeev approaches
 - Hirokazu Sasaki: R-matrix methods
 - Aim to expand these skills-transfer/training efforts

Objectives

- I. Improve effectiveness of US Nuclear Data Program for broad community of ND users
 - improved analysis & computational techniques
 - identification of high-priority needs
 - support for experiment design, analysis & interpretation
 - improve availability of data
 - online & published
 - dissemination of nuclear reaction & structure data
- II. Multi-use and/or high-impact nuclear
 - NP basic science users
 - Nuclear energy
 - Non-proliferation
 - Radiation & criticality safety; planetary & space science
- III. Support SC/NP funded research
 - Prioritize ND experiments in 2015 LRP for Nuclear Science
 - QCD, Nuclear Astro, Fundamental Symmetries & ν
- Elements of interest
 - Material categories: structural, controlled, intervening, detector, source

NUCLEAR DATA INTERAGENCY WORKING GROUP (NDIAWG) RESEARCH PROGRAM

Funding Opportunity Announcement (FOA) Number: DE-FOA-0002440

Selected publications New/recent/upcoming SBEND and related work

- Resonant Faddeev-R-matrix theory for breakup reactions (LANL, Hale & Paris)
 - PHYSICAL REVIEW C (in preparation)
- Deuterium-Tritium Fusion γ Ray Spectrum at MeV Energies with Application to Reaction-in-Flight Inertial Confinement Fusion Measurements (LANL P-Division, w/Hale & Paris)
 - PHYSICAL REVIEW C (Accepted) (2024)
- Measurement ¹³C(α,n₀)¹⁶O diff. cross section from 0.8 MeV to 6.5 MeV (UND, w/Hale & Paris)
 PHYSICAL REVIEW LETTERS 132, 062702 (2024)
- Measurement Q=4.4 MeV ¹²C(n,n'γ) from threshold to 16.5 MeV (LANL P-Division, w/Paris)

- PHYSICAL REVIEW C 108, 014603 (2023)

Caveats

R-matrix Evaluations compared to ENDF/B files

Long version

- This talk is focused on the (LANL) R-matrix evaluation capability
- These evaluations are (*should be*) consistent with ENDF/B library files
 - Up to the maximum energies in the R-matrix evaluation
 - Which may be less than 20 MeV (the ENDF mandated minimum highest energy)
 - With the MT (scattering or reaction designator)
 - There may be other final states/reactions/scatterings/processes in the ENDF/B files that did not come from our R-matrix evaluation

Short version

• ENDF/B can (and usually does) contain scattering and reaction cross section data whose origin is not from the R-matrix analysis methodology

Collaborative Work Overview i) Data efforts ii) Light-element evaluation updates Compound systems ⁷Li, ⁸Be, ¹⁰Be, ¹³C, ¹⁵N, ¹⁷O

Collaborative work

Broad overview

• Materials of interest

- First priority
 - H, C, N, O
- Follow-up
 - He, Li, Be, B

- Elemental processes of interest
 - SBEND initial prioritization
 - subject to need
 - DOE/SC & NNSA motivation

Category	Material	SBEND Elements
Structural	Al, steel, AM material	H, C, N, O
Controlled substances	Conventional explosives, pharmaceuticals, chemical agents, SNM	H, C, N, O, F, P
Intervening (shielding)	Poly, H_2O , <i>n</i> abs, Pb, W	H, Li, Be, B, C, O
Detector	Org & inorg scint, semicon, housings, PMT	He, He, C, O
Source	Detector housing, source reactions	Li, Be

Priority evaluations	DOE-SC user interest	NNSA user interest
1 H $(n, n)^{1}$ H; 1 H $(n, \gamma)^{2}$ H;	Reference/monitor cross section;	Reference/monitor for various
$^{2}\mathrm{H}(\gamma,n)^{1}\mathrm{H}$	BBN	actinides, $e.g.^{235}$ U (n, f) ;
		Non-proliferation/interrogation
⁶ Li $(d, \alpha)^4$ He; ⁷ Li $(p, \gamma/\gamma^*)^8$ Be	BSM physics; BBN	Nuclear security
$^{12}C(n, n'\gamma)^{12}C; ^{12}C(\alpha, \gamma)^{16}O;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{12}C(\alpha, \alpha'\gamma)^{12}C$	structure	non-proliferation/interrogation
¹³ C(α, γ) ¹⁷ O; ¹³ C(α, γ) ¹⁶ O;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{13}\mathrm{C}(lpha,lpha'\gamma)^{13}\mathrm{C}$	structure; Neutrino-detection	non-proliferation/interrogation
	backgrounds	
$^{14}N(n,n)^{14}N; ^{14}N(n,p)^{14}C;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{14}N(n, \alpha)^{11}B; ^{14}N(n, n'\gamma)^{14}N$	structure	non-proliferation/interrogation
$^{15}N(n, n'\gamma)^{15}N;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{15}N(p, \alpha'\gamma)^{12}C;$	structure	non-proliferation/interrogation
¹⁶ O(n, α) ¹³ C; ¹⁶ O(γ^*, α) ¹² C;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$ {}^{16}\mathrm{O}(n,n'){}^{16}\mathrm{O}^*;$	structure; Neutrino-detection	non-proliferation/interrogation
$^{16}{\rm O}(n,n'\gamma)^{16}{\rm O};$	backgrounds	

Data effort: planned improvements to x4i EXFOR interface; python (https://github.com/brown170/x4i.git)

- Developed at LLNL by D. Brown as a lightweight API for EXFOR.
- GPL release in 2010 when D. Brown transitioned to BNL; pip install and Python3 update in 2022
- Used by FUDGE & ADVANCE for ENDF V&V
- Modest use in SG-30 for checking EXFOR
- Used in two papers

More updates needed:

- New EXFOR coding (e.g. "PAR")
- Ensure levels in EXFOR match RIPL
- Sync with new EXFOR Master file locations, new EXFOR Dicts
- Implement EXFOR checking
- Compatibility with PANDAS DataFrames
- Improve database indexing

Help EXFOR modernization project and NRDC

Enable SBEND data extraction

Evaluation pipeline *EDA R-matrix procedure*

- **1.EDAf90** code handles all types of data [*EXFOR/CSISRS; publications; priv. comm.*]
 - total, integrated, diff'l, polarized, unpolarized; neutron-, CP-induced, photon: (n,X), (p,X), (d,X), (t,X), (γ,X) , ...
- 2.EDAf90 handles all the compound system (here: ¹⁰Be) data *simultaneously*
- 3. Optimization over parameters simultaneously fits all the data with the same parameters
- 4. EDAf90 → ENDF-6 formatted ENDF/B libraries for processing to CE & MG libraries
- 5. Testing & evaluation by hand; future: automate

Recent theoretical work With applications

Recent work Theoretical modeling

T2: Improved physics modeling and theoretical work

Objective: • predictive model for breakup

17

Recent work

Theoretical modeling & Applications

- Applications
 - ${}^{3}H(d,n\gamma){}^{4}He$
 - ${}^{3}H(t,2n){}^{4}He$

SPECT code calculation

- Employs state-of-the-art Faddeev-like resonance model
- Relativistic kinematics necessary for γ production

SBEND collaboration **Conclusion & Outlook**

- Sustaining current momentum
 - Close collaboration and interface with experimentalist colleagues
 - New personnel represents a significant expansion of our efforts
 - Hlophe, Sasaki, summer GRA
 - Skills transfer/training efforts
 - New work on data management and handling
 - x4i/EXFOR
 - Clarification of inelastic observed data (PAR)
- Maintain new initiatives
 - Experimental database
 - Evaluations (to higher energy)
 - Theory
 - Algorithms (ML, TensorFlow)
 - Data generation
- Address data needs
 - Fusion energy, nuclear safety, security & basic science
 - Tell us what your needs are! - Source priority needs list from these communities

Thanks in advance for your questions & support

Collaboration work: methods & approach

Exterior region • Multi-channel R-matrix EDA_{f90} R-matrix $|\Psi_c
angle = |\mathscr{I}_c
angle - \sum_{c'}|\mathscr{O}_{c'}
angle S_{c'c}$ • Coupled-channel approach $S_{cc'} = \delta_{cc'} + 2i \ T_{cc'}$ $r
ightarrow\infty$ • Machine learning algos Channel surface $\mathscr{S}_c \in \mathbb{R}^{3A-4}$ - BRR, MDN, QUILTR Interior region $\left[H + \mathscr{L}_B
ight] \left| \lambda
ight
angle = E_\lambda \left| \lambda
ight
angle$ $|\Psi
angle = [H + \mathscr{L}_B - E]^{-1} \mathscr{L}_B |\Psi
angle$ Machine learning $\mathscr{L}_B = \sum_c rac{ia_c}{2m_c} |a_c
angle \langle a_c | (\hat{p}_r + iB_c) |$ $R_{B,c'c} = \langle c' | [H + \mathscr{L}_B - E]^{-1} | c
angle = \sum_\lambda rac{\langle c' | \lambda
angle \langle \lambda | c
angle}{E_\lambda - E}$ g_PDF_eval < gini = 0.449 samples = 53 alue = [18, 35 cumul_avg_spacing < gini = 0.484 Coupled-channel methods $R \le 34.90$ i = 0.5 les = 174 = [88, 86]acingR <= 40.2 gini = 0.488 samples = 121 value = [70, 51] r' ng_PDF_eval <= 0.0 gini = 0.497 samples = 191 value = [103, 88] cumul_avg_spacing <= gini = 0.498 samples = 103 value = [55, 48] idthVavetotwidth <= gini = 0.487 samples = 88 value = [51, 37] r A amples = 72 lue = [38, 34 gini = 0.391 amples = 15 alue = [4, 11]gini = 0.5 samples = 8 value = [4, 4] ad_dif_elwidthVaveelwidth <= 399. gini = 0.5 samples = 2 value = [1, 1] R_{α} $\mathbf{R}'_{\mathbf{\beta}}$ Decision tree @ 5 nodes a h

Deliverables: Tasking

• T1: New evaluation work

Deliverables: Tasking

T2: Improved physics modeling and theoretical work

• $(z, z'\gamma)$, $z, z' = n, p, d, t, \alpha$

- Rapid progress in basic theory; implementation needs more effort

- FRM: Feshbach-Reich-Moore
- HE: High-energy evaluations
 - Theoretical framework to join the R-matrix approach with Coupled-Channel methods
 - Continuous effort on these exploratory works

Deliverables: Tasking

T3: Numerical code development and implementation

- C1: Data formatting, storage, and transmission
- ML1: Extend BRR code to address optimization of spin-group parameters
- ML2: Bayesian optimization to improve search algo
- C2: Backend code development for generating data in GNDS & ENDF-6 formats

Deliverables: Code development FIII. Data formatting, storage, and transmission

- Code capabilities & development driven by
 - FOA objectives
 - Evaluation needs: higher A, E (number of nucleons, reaction energies)

Code name	Purpose	Language	Improvements
EDA _{f90}	R-matrix calc/fitting	Fortran90/95	Full (z , $z'\gamma$); integration
RESPAR	Resonance parameters	Fortran77	Python/ENDFtk/FERDINAND
FRESCO	Coupled-channel/R-matrix	Fortran90/95	GPU
RFLOW	GPU/fast optimization R-matrix	Python/TensorFlow	Multi-GPU
FERDINAND	R-matrix parameter handler	Python	Concurrent covariance matrix
SPECT	$(z, z'\gamma)$	Fortran77	Full theory; Fortran2008
STEEP	$\langle \sigma v \rangle$	Fortran77	NJOY module/Python
NDIOUT	Multigroup σ	Fortran77	NJOY module/Python
COVAR/ANGCOV	$\langle \rho_i(E) \rho_j(E') \rangle$	Fortran77	NJOY module/Python
QUILTR	MCMC parameter optimization	Python	Integration with R-matrix
BRR [scikit-learn]	Resonance classification and optimization	Python	Integration with R-matrix, CC, for global optimization

Collaborative work targeting objectives

Collaboration work

Recent evaluations

- Neutrino detection: ${}^{13}C(\alpha, n_x){}^{16}O \quad x = 0,...,3$
 - KamLAND detector neutrino spectrum
 - Phys. Rev. Lett. 125, 062501 (2020) [Febbraro *et al.*]
 - agrees well with ENDF/B-VII.1 & ENDF/B-VIII.0 based on LANL R-matrix evaluations
 - "we encourage the KamLAND collaboration to assess the impact of these new results."
- Beyond standard-model (BSM) physics
 - putative BSM candidate *X17*
 - $^{7}\text{Li}(p,e^{+}e^{-})\alpha\alpha$
 - require better determinations of isovector & isoscalar M1 transitions 8Be system
 - Sterile neutrinos and other exotica
 - use Big Bang nucleosynthesis as precision probe [PRD 93, 083522 (2016)]
 - requires ~ 1% accuracy in light-element cross sections
- Nuclear science & engineering
 - Traditional reactors BW, PWR, CANDU, ...
 - H, C, N & O neutron moderators
 - Next generation reactors
 - Coolant: FLiBe
 - Molten salt: F, Cl, Na

Overlap with other NDIAWG funded work

- AIACHNE (PI: Denise Neudecker LANL)
 - Explore systematic bias in differential ND databases; design experiments (²⁵²Cf(sf))
 - Use ML methods to search large number of differential data features
 - We, too, are interested in systematics in differential data for light elements
 - Light-elements are often monitor reactions for relative measurements
- White-Source n-γ Coincidence Measurements (PI: Keegan Kelly LANL)
 - Non-destructive active interrogation for non-proliferation
 - M. Paris co-investigator
 - ${}^{16}O(n, n'\gamma){}^{16}O$
- GRIN [next slide]

Gamma-rays Induced by Neutrons (GRIN) to address $(n,n'\gamma)$ and (n,γ) gamma data deficiencies [PI: D. Brown]

- Outgoing gamma data needed for active interrogation applications in non-proliferation, safeguards, space exploration, soil science, etc.
- Worlds most reliable source of gamma branching ratios, primary gammas is ENSDF
 - This data not reflected in ENDF
 - GRIN project will fix!
 - ENSDF is only experiment, so must "complete" with simulations
 - Leverage modernized ENSDF format & API (SC NP funded)
- Enable event-by-event gamma cascades
- Funded by NDWIAG process (NA-22)
- Gamma data needed also by SBEND evaluations, is out of scope of conventional Rmatrix approaches

Collaboration work: Machine Learning

Address task of determining resonance parameters (spin, parity, couplings)

- Resonance classification problem
 - spin, parity, other quantum numbers
 - expert knowledge reliant
- The Atlas Neutron Res has many misclassified resonances!
- Classification well suited for ML

ML-algo code tools

- **BRR** simple and robust method
 - Resonance spin group assignment is label
 - Use out-of-distribution metrics as ML features
 - Train on high-fidelity evaluations
 - extend other compound systems, higher energies
- MDN (Mixture Density Network) •
 - probabistic ML for uncertainty quantification
- QUILTR (Quantified Uncertainties in Low-energy) Theory for Reactions)
 - Bayesian Markov Chain Monte Carlo for FRESCO
 - quantifies parametric uncertainties on model parameters

BRR reclassified 17%

of ⁵²Cr resonances

Employ lightweight

and clever problem

scikit-learn classifiers

Raw Spectra

Feature Extraction Classification Prediction

BRR uses a Machine Learning approach

design