Measurements of Neutron-Induced Breakup Reactions from Lithium Isotopes with Fast Neutrons Using an Inertial Confinement Fusion Platform

C. J. Forrest **University of Rochester** Laboratory for Laser Energetics

WANDA

*TBR: tritium breeding ratio

Arlington, VA February 26–29 2024

Summary

Discrepancies between measured spectra from the neutron-induced scattering reactions and theoretical calculations still exist for lithium isotopes

- Lithium isotopes are one of the primary components being proposed for DT fusion reactor liners for the breeding of tritium from ${}^{6}Li(n,t)\alpha$ and ${}^{7}Li(n,n')t\alpha$ reaction channels^{*}
 - the amount tritium required for commercial applications of fusion reactors for energy generation does not occur in nature
- Knowledge of the particle production cross sections from interactions of 14-MeV neutrons in thick targets is required for simulations of neutronics and the tritium breeding rates
- The bright neutron source available at the OMEGA laser facility makes this an important instrument to measure neutron-induced breakup reactions and tritium breeding rates from lithium isotopes.

M. Rubel et al., Fusion Eng. Des. 136, 579 (2018).

Summary

Discrepancies between measured spectra from the neutron-induced scattering reactions and theoretical calculations still exist for lithium isotopes

- Lithium isotopes are one of the primary components being proposed for DT fusion reactor liners for the breeding of tritium from ${}^{6}Li(n,t)\alpha$ and ${}^{7}Li(n,n')t\alpha$ reaction channels^{*}
 - the amount tritium required for commercial applications of fusion reactors for energy generation does not occur in nature
- Knowledge of the particle production cross sections from interactions of 14-MeV neutrons in thick targets is required for simulations of neutronics and the tritium breeding rates
- The bright neutron source available at the OMEGA laser facility makes this an important instrument to measure neutron-induced breakup reactions and tritium breeding rates from lithium isotopes.

M. Rubel et al., Fusion Eng. Des. 136, 579 (2018).

J. P. Knauer¹, W. U. Schroeder², V. Yu. Glebov¹, K.L. Marshall¹, P. B. Radha¹, A. Schwemmlein¹, and C. Stoeckl¹

¹University of Rochester Laboratory for Laser Energetics ²University of Rochester Departments of Chemistry and Physics

G. Hale and M. Paris

Los Alamos National Laboratory

B. Appelbe and A. Crilly

Imperial College

Breeding Tritium from a Lithium Blanket

Natural lithium as breeder material will not lead to a tritium breeding rate large enough for a reactor to sustain self-sufficiency

A solution is to increase the content of ⁶Li(%) to a level required to achieve a tritium-breeding ration (TBR > 1).

The measured cross sections for the ⁷Li(n,n't)α reaction channel available in the literature vary significantly.

Figure 3. TBR value in different ⁶Li enrichment

The final blanket material will likely be a variant of lithium isotopes, beryllium, fluorine, lead,

Accurate measurements of this cross section is required for simulations of neutronics and the tritium breeding rates.

* I. Rosidah et al., Journal of Physics. 493 (2020) 012003)

Inelastic Scattering ⁷Li – Motivation

Experiments to study neutron-induced breakup reactions are required since past measurements show significant differences

Lithium-7

- Earlier experimental data as compared to the available • evaluated nuclear data (JENDL) show a large disagreement below the second inelastic excited state.
- Enhancement in the lower-energy region is believed to be ٠ caused by the excitation of higher energy states that have not been fully resolved.
- There is no available experimental data that measured the • cross section below 30° with 14-MeV neutrons.
 - the experimental platform on OMEGA has been shown to make successful measurements near 0°. **
 - recent experiments have looked at ⁶Ll, ⁷Li, and ⁹Be.

* S. Chiba et al., J. Nucl. Sci. Technol. 22, 771 (1985). ** C. J. Forrest et al., Phys. Rev. C. 100, 034001 (2019).

Inertial Confinement Facility (ICF) – High Yield Neutron Beam

A high-yield neutron source is achieved with ICF lasers that create pressures of ~100 Gbar and plasma temperatures up to 100 keV

Reaction products from the "hot spot"

> *P* ~ 100 Gbar $\rho R: 250 \text{ mg/cm}^2$ $T_{\rm i}$: 30 keV ($E_{\rm CM} \sim 100 \, \rm keV$)

Experimental Setup

A novel approach to measure the neutron-induced scattering reactions between light-Z nuclei has been developed at the OMEGA Laser Facility.

The vessel is located as close as possible to the implosion, maximizing • the solid angle without interfering with the laser pulses required for illuminating the DT implosion target.

> The experimental time-of-flight data are post-processed to achieve a "modelindependent" energy spectrum of the inelastic scattering contributions.*

Ø.365

* C. J. Forrest et al., Rev Sci. Instrum. 93 .(2022).

Inelastic Scattering ⁷Li – Experimental Data

A trial function was used to evaluate the scattering cross sections from the different reaction channels*

$$1st$$

$$\frac{d^2\sigma}{d\Omega dE'}(E_{in},\theta,E') = \sum_{i=1}^n A_i \exp(-\frac{(E'-E_i)^2}{\sigma_i^2}) + A_{n+1}$$

- 1st Term: The discrete energy levels from the scattered neutrons.
- 2nd Term: The three-body phase space distribution for ⁶Li(n,n')d α and ⁷Li(n,n')t α reaction channels.

3rd Term: The evaporation term for the n,2n reactions.

The 2nd term of this trial function does not capture the decrease in the signal around 8 MeV.

* S. Chiba et al., J. Nucl. Sci. Technol. 22, 771 (1985).

Experimental Results – ^{6,7}Li

ROCHESTER

The three-body breakup from ⁶Li(n,n')d α and ⁷Li(n,n')t α show good agreement with earlier measurements

The evaluated data (JENDL-3PR1) show a smaller cross-section at lower neutron emission angles for both ⁶Li and ⁷Li

First measurements with a neutron emission angle at $\theta_{lab} \sim 0^{\circ}$

Experimental Results – ^{6,7}Li

A significant deviation in the cross section at the near-zero neutron emission angle is observed for both ⁶Li and ⁷Li.

Only a single data set for (n,2n) cross sections with 14 MeV incident neutrons are available in the literature

Again, first measurements with a neutron emission angle at $\theta_{lab} \sim 0^{\circ}$

ROCHESTER

Measurements on an Accelerator

An effort is underway to measure of the cross sections from lithium isotopes with fast neutrons at the TUNL facility

- Interactions vessels used on OMEGA where brought to the **TUNL** facility for cross section measurements.
 - preliminary measurements were performed and the data is still being analyzed.
 - remaining lithium will be melted into cylindrical samples at the University of Rochester and will be sent to TUNL.
 - More experiments are being planned for this upcoming summer.

A major goal of doing these measurements is to investigate the lower energy region at the lowest neutron emission angle that can be achieved.

New Experimental Platform – Mini Test Blanket

An experimental platform to position a mini-blanket on the exterior wall of the OMEGA target chamber is being proposed

An open port on the OMEGA chamber is available to build ionization chamber using test materials.

- On average the OMEGA Laser Facility performs up 100 high-yield DT implosions per year each generating up $2x10^{24}$ neutrons/second in 4π .
- The mini-blanket will measure the tritium production with one of the highest neutron fluxes used to test blanket materials currently available.

New Experimental Platform – summary notes

This proposal is apart of the recent Basic Research Need (BRN) workshop that was held in January 2024

- These measurements would also be beneficial (cross cutting) for both IFE and MFE when designing inner facing components (i.e. liquid lithium walls).
- Part of the proposal is to quantify how much of the tritium may be trapped in the chamber material itself which could potentially be difficult to extract back out.
 - vanadium is a candidate material for blankets but vanadium alloys have a high hydrogen solubility and require permeation barriers to prevent significant tritium permeation into the vanadium structural material.
- Designs of what a ionization chamber (wall and blanket materials) is only in the conceptual design ۲ phases.
 - requires ~500 grams of lithium and configuration is critical (possibly 3D print lattice).
 - residual scattering into test chamber will compromise measurements (need to model).
 - the community requires 1% accuracy for tritium accountancy (FOA reviewed and challenging).

Summary/Conclusion

Discrepancies between measured spectra from the neutron-induced scattering reactions and theoretical calculations still exist for lithium isotopes

- Lithium isotopes are one of the primary components being proposed for DT fusion reactor liners for the breeding of tritium from ${}^{6}Li(n,t)\alpha$ and ${}^{7}Li(n,n')t\alpha$ reaction channels^{*}
 - the amount tritium required for commercial applications of fusion reactors for energy generation does not occur in nature
- Knowledge of the particle production cross sections from interactions of 14-MeV neutrons in thick targets is required for simulations of neutronics and the tritium breeding rates
- The bright neutron source available at the OMEGA laser facility makes this an important instrument to measure neutron-induced breakup reactions and tritium breeding rates from lithium isotopes.

New Experimental Platform

An experimental platform to measure the emitted neutron with increasing angles is under development at the Omega Laser Facility

Experimental data in the lower energy region <4 MeV with increasing neutron emission angles (0° to 90°) is required to reduce the uncertainty

This configuration will allow for less lithium since the neutron source will be much closer to the target sample.

Forrest Chiba Comparison

A proof of principle with deuteron breakup

Neutron-Induced Breakup of a Deuteron – EA approach

A comparison between the earlier method to extract the cross section shows good agreement with the evolutionary algorithm

- These results are a good indication that the subtraction approach is sufficient to extract the cross section.
 - One campaigns used H_2O/D_2O .
 - Three campaigns used C_6H_6/C_6D_6 .
- The three campaigns have been averaged together.

