REBCO and BSCCO fast neutron irradiations at the LBNL 88-Inch Cyclotron

Lee A. Bernstein

Department of Nuclear Engineering University of California – Berkeley

Nuclear Science Division Lawrence Berkeley National Laboratory

http://nucleardata.berkeley.edu

Thick target deuteron breakup has been known as an effective source of fast, forward focused neutrons and was even considered for ²³⁹Pu production in the 1940s*

Low-Z targets are particularly good since they have the lowest dE/dx and therefore the longest effective target thickness

Thick target deuteron breakup (TTDB) neutron beams on light targets are also strongly forward focused (the neutrons follow the direction of the deuteron beam)

WANDA 2024 – Bernstein et al.,

2

Jon Morrell* developed a combined 5 parameter model that describes the doubledifferential TTDB neutron production cross section

WANDA 2024 – Bernstein et al.,

Jon Morrell

We benchmarked the model for 40 MeV deuterons on a thick Be breakup target

40 MeV deuterons*

 $\phi = 1.4x10^{11} \text{ n/s/cm}^2$ @ 1 cm $\phi = 2.0x10^{10} \text{ n/s/cm}^2$ @ 10 cm $\phi = 2.2x10^5 \text{ n/s/cm}^2$ @ 10 m

50 MeV deuterons*

 $\phi = 7.5x10^{12} \text{ n/s/cm}^2$ @ 1 cm $\phi = 1.2x10^{11} \text{ n/s/cm}^2$ @ 10 cm $\phi = 6.7x10^5 \text{ n/s/cm}^2$ @ 10 m

Spectral variation as a function of angle allows for simultaneous measurements

TTDB neutron beams are available at two caves at the 88-Inch cyclotron*

Cave 0 (This talk)

- High-level cave capable of running up to 1.5 kW of beam power (ASE limit).
- Breakup in Vault or Cave.
- Max flux : 10^{12} n/s/cm^2

Cave 5 (See J.A. Brown's talk)

• "TOF Quality" flight path from 7-22 m.

REBCO and BSCCO Irradiation "Volunteers" at the 88-Inch cyclotron (20 hours @ a total integrated charge of 0.2 Coulomb)

REBCO and BSCCO Irradiation "Volunteers" at the 88-Inch cyclotron (20 hours @ a total integrated charge of 0.2 Coulomb)

There is significant variation in flux across the different REBCO strips due to their proximity to the deuteron beam

REBCO Low Energy $(14^{\circ} < \theta < 68^{\circ})$

WANDA 2024 – Bernstein et al.,

BERKELEY LAB

REBCO Low Energy $(14^{\circ} < \theta < 68^{\circ})$

How do our measured conversion fractions compare to predictions from our neutron model?

- Can assay H production from ⁵⁶⁻⁵⁸Co
 (n,p) data above 20 MeV is essential
- He production can be calculated
- IFMIF & FPNS use 40 MeV deuterons *This energy might be too high!*

VERY Preliminary !!!

θ_1	θ_2	⁵⁶ Co (x1000) ppb	⁵⁷ Co (ppb)	⁵⁸ Co (ppb)
80	81	0.68	0.04	0.12
76	79	1.34	0.07	0.19
79	80	1.16	0.06	0.16
70	75	2.68	0.14	0.34
14	68	61.52	1.72	2.12
ENDF + Simple Geometry			1.46	1.81

Chris Reis is spearheading Gas Production/Materials Characterization at UC Berkeley with Hosemann Nuclear Materials Group and LBNL's Molecular Foundry

US-Japan High Energy Physics Collaboration to aid with superconductivity measurements using VTI Probe at IRCNMS

- US-Japan HEP collaboration LBNL Leads Chris Reis, Tengming Shen, et. al coordinating with KEK collaborators Toru Ogitsu, Masami Iio, et. al to assess radiation effects on superconductivity
- 15.5 Tesla Variable Temperature Insert (VTI) specially designed for hot samples to be used at International Research Center for Nuclear Materials Science (IRCNMS)
- Changes to Critical Current, Critical Temperature, n-value, Irreversibility field, etc., are key parameters to be assayed.

Conclusions

<u>Summary</u>

- Several ppb of the Ni in the sample were transformed to Co during a short lowintensity run, making H in the process. Helium production would be similar.
- Lots of Y reactions products (Is this a big problem?)
- A full scale run (x25 integrated charge at 0°) would yield 0.1-0.2 ppm gas production plus lots of displacements and secondary particle production <u>Future plans</u>
- Perform cryogenic (LN) irradiations using a new jig being designed by the Hosemann/Prestemon group
- Test a new high-intensity Beryllium target developed with a corporate partner (NorthStar)
- Irradiate NIF final stage optics as part of the new IFE-STARFIRE collaboration

Collaborators and Acknowledgments

L.A. Bernstein^{1,2}, C. Gesteland¹, P. Hosemann¹, Y.-H. Lee¹, M. Nair¹, E.B. Park-Bernstein¹, S. Prestemon², C. Reis^{1,2}, T. Shen², A.S. Voyles¹

¹University of California – Berkeley Department of Nuclear Engineering ²Lawrence Berkeley National Laboratory

This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH1123 and the US Nuclear Data Program

WANDA 2024 – Bernstein et al.,

Soren Prestemon

Gesteland