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Distribution of data with select covariances:
do not stray far from the line of stability

Evaluations that include (n,el), (n,n’), (n,2n), and (n,y) covariances:

Uncertainties:
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“the goal is completeness, not high
fidelity. [...] Neither would the existence
of this body of data remove at all the
necessity for a more methodical and
accurate evaluation of important
covariance data, such as is underway at
Fmill several Laboratories.”
Sk "5 “In order to accomplish this large task,

i there was minimal utilization of

Yb
Tm

EoRam experimental data.”

Nuclear Data Sheets 109 (2008) 2828-
2833



What does it mean in practice? In regions where theory works
well data can be used to gauge parameters and uncertainties

239p

* Fit optical model potential to 14 — EN;E/(Bm\IITIIﬂ(E

reproduce data.

* Reproduce ENDF result 12 -
(obtained using generalized
least squares)

* Post-fit, use various methods

(Kalman Filter/Backward- 81
Forward Monte Carlo) to obtain
covariances by mixing theory 61
with data.
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In a perfect world, with data statistically
distributed, both methods seem to work

 BFMC meanis closer to the
true value post-data
introduction.

* Multiple realizations, each get
assigned a different weight
according to agreement to
data.

* But how do pathogenies in the
data manifest/propagate to the
evaluation?
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Most codes can handle inputs that are
correlated across small mass ranges. udngotner

actinides ——
* Example: optical potential - — zi):ﬂi:ii:ide} N
parameters: s b ~-- ENDF/B-VIILO
Linear with mass/isospin . /
asymmetry
* Hauser-Feshbach calculations: 5 10 Using only %5Pu

Same level density/strength
function/(fission) parameters
for a given nucleus regardless if
It is reached by neutron
absorption, (y,n), (n,2n) etc.
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Result is a more robust fit, that also extends across multiple

l . C d d . d d
nuctel. Can we exten ata to discern mass epenaence :
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—— 239py only fit
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: correlated data sets are highly valuable.




If data is abundant, we can try to ignore theory

 239Py(n,tot) cross section has
multiple measurements across
various energy ranges.

* Clear normalization
disagreements between
various experiments.

Otot

e ENDF evaluation is smooth in
this case, not necessarily the
case for other actinides.
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By binning the data in small energy
Increments we can discern driving parts

* Make small (10 keV) bins in energy

and fit a straight line.

* The uncertainties are plotted here.

e Line can be evaluated at mid-bin
as a reference.

e Clearly, while the data could
follow the linear model,
statistically speaking, they don’t

agree with it (>30 discrepancies).
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We can re-do the fit excluding each data point
and see how they compare

* Single data point dominates the
fit (difference of ~1%)).

* Uncertainty of prediction almost
doubles.

* Looking back, it corresponds to a
single point that has ~1 order of
magnitude less uncertainty than
the rest (from Harvey, 1988,
O(i=12.2 b at 0.075 MeV).

* The rest of the measurements are
a perturbation of 0.4% of the
mean.
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Bootstrapping also points to the same
conclusions.

» Take a subset of data points, 20 — 122620.5%
replicate them to have the 1245 - —
same total number of data, 5 } T
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Iterative outlier rejection can be automated
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Conclusions

* We use what data exists to constrain the model(s).

* Moving to regions of the chart vs specific nuclei represents new
challenges.

* Should test data sets for consistency with one another: could be
automated?

* Inflating error bars could also work (used by PDG).
* |s automatic exclusion a weapon of math destruction?

 Cases where data is sparse require further attention (for
example, 23°Pu(n,2n))

* Asis, only applies to fast region (>100 keV). Connect regions?



