

Safety-significant covariance?

B.J. Marshall

WANDA Hilton Arlington National Landing February 28, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

- Safety case for validation gap
- Brief summary of a case study*

^{*} Taken from W.J. Marshall, "Lost and Found Opportunities Around the Chlorine Worth Study," ICNC 2023, Sendai, Japan, Oct. 2023.

Safety case for a validation gap (1/4)

- Validation gap or weakness:
 - Material present in safety analysis model and
 - 1. Absent from validation benchmark set **OR**
 - 2. Not well represented in validation benchmark set
- Could neglect presence of material if absorber
- Could perform additional experiments to fill gap
- Could assess a reactivity margin to apply to the upper subcritical limit (USL) to account for gap

Safety case for a validation gap (2/4)

• Methods to determine magnitude of margin:

- 1. Guess a margin large enough to satisfy reviewers/regulators
- 2. Engineering judgement based on prior similar experience
- 3. Safety analysis model calculations to estimate impact of potential error in unvalidated material
- 4. S/U-based uncertainty propagation
 - Same as option #3 but way fancier

Safety case for a validation gap (3/4)

Application system sensitivity to missing nuclide, generated by TSUNAMI in SCALE or KSEN in MCNP

Generic covariance data, here ³⁵Cl (n,y) from SCALE 44-group library and 56-group ENDF/B-VII.1 library

Uncertainty is believed to bound the bias, so propagating it to the system of interest estimates the potential bias from the unvalidated material

Safety case for a validation gap (4/4)

- Defense needed to accept margin based on covariance data
- Options:

- Argue it's better than arbitrary guesses or engineering judgment
- 2. Use different libraries to examine variability of margin
- 3. Look at different covariance estimates qualitatively
- 4. Find the evaluator and discuss

Case study for option #2: Impact of multiple libraries

- Two ²³⁹PuCl₃ application systems:
 - 1. 100 g ²³⁹Pu/L
 - 2. 600 g ²³⁹Pu/L
- ^{35}CI (n, γ) sensitivities very different
- Covariance estimates very different:

Library	100 g/L model (pcm)	600 g/L model (pcm)
44-group SCALE 6	78	264
56-group ENDF/B-VII.1	68	66

Energy (eV)

Now what?

- Magnitude of the difference is system dependent and will surely be nuclide dependent as well
- Large fluctuations between covariance evaluations do not inspire confidence with practitioners or regulators
- Need to identify rigorous tests of covariance data
- Must move towards passing these tests and providing basis for safety-significant use of covariance data

Acknowledgment

This presentation was supported by the Department of Energy and Nuclear Regulatory Commission Collaboration for Criticality Safety Support for Commercial-Scale HALEU (DNCSH) Fuel Cycles.

Questions?

