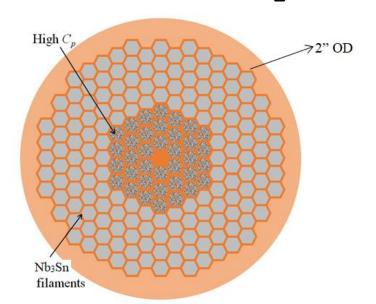


Current status of high- C_p Nb₃Sn conductor development

Xingchen Xu

Fermi National Accelerator Laboratory

Xuan Peng (Hyper Tech Research Inc), Fang Wan (Fermilab), Jacob Rochester & Mike Sumption (OSU)


Current status of high- C_p strand development

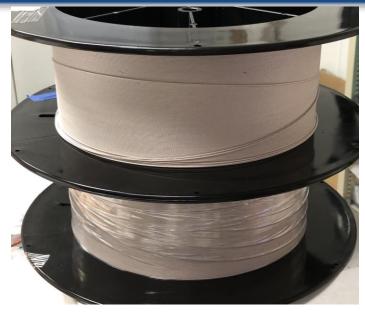
The wire development work (e.g., optimizing wire design, recipe, etc.) is more or less finished.

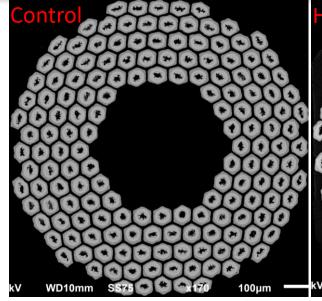
Ongoing work for high- C_p Nb₃Sn wire:

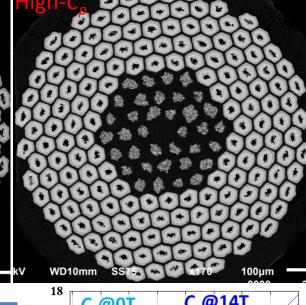
- I. Draw a big billet down to make some long-length wires (Hyper Tech)
- II. Use the short wires we have now to fabricate a small coil to test training performance (Allen Rusy)

Current status of the big billet:

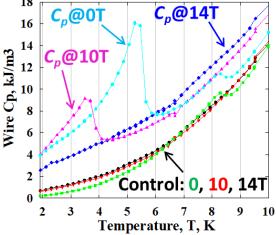
- All the filaments were made by Feb 2023. The billet has been ready to draw.
- But has been stuck at the stage of drawing the billet from Φ2" to Φ¾".
- Hyper Tech can draw billets as large as ¾". Need an outside vendor for 2".
 - Made agreement with Luvata in 2022. But it did not work out.
 - · Now making agreement with ATI.
- After the billet is drawn to Φ¾", the rest should be quick.


3' long x Φ2" billet (14 kg) \rightarrow 2-5 km long wires.





Use short wires to test training performance


Wires:

Both: 0.6mm diameter, $d_{fila} \sim 30 \mu m$, 15mm twist pitch.

Insulation: S2 glass, 0.065mm thick.

• Wire length we have now: 60 m control, 90 m high- C_p .

Component vol%	Control	High-C _p
Nb ₃ Sn filaments	46%	46%
High- C_p filaments	-	4.5%
Cu matrix	54%	50%

Current status: Allen Rusy is waiting for the winding machine.

