

Design of 20 T Hybrid Cos(*θ***) Dipole Magnets for Future High-Energy Particle Accelerators**

M. D'Addazio, J. F. Croteau, P. Ferracin, G. Vallone

10/03/2023

Acknowledgements

US MDP (in particular the "20 T working group")

- LBNL: D. Arbelaez, E. Anderssen, L. Brouwer, M. Naus, L. Garcia Fajardo, J.L. Rudeiros Fernandez, M. Juchno,
 S. Prestemon, T. Shen, R. Teyber, X. Wang
- FNAL: G. Ambrosio, M. Baldini, E. Barzi, S. Gourlay, V. Kashikhin, V. Marinozzi, I. Novitski, G. Velev, A. Zlobin

M. D'Addazio

- NHMFL: L. Cooley, D. Larbalestier
- BNL: K. Amm, M. Anerella, J. Cozzolino, R. Gupta, F. Kurian, B. Yahia

Contributions from

- E. Rochepault (CEA): 20 T dipole block design
- D. Martins Araujo (PSI): 20 T dipole quench protection
- B. Bordini (CERN)
- F. Niccoli (UNICAL)

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

Design Criteria of 20 T Hybrid Magnets

- Coil and magnet parameters
 - Free coil aperture (diameter)
 - Operational bore field
 - Load-line fraction @ $1.9K: I_{op}/I_{ss}$
 - 2D Geometrical harmonics
- Quench protection
 - All coils powered in series
 - Maximum hot spot temperature
- Mechanics
 - Maximum Nb₃Sn coil stress
 - For the HTS

50 mm 20 T <= 87 % b_n<3 units for n<10 (at R_{ref} = 17 mm)

350 K

<180 (<150) MPa at 1.9 (293) K <120 MPa

Design Criteria – Material Properties

		Room Temperature				4.5 K										
Material	Details	E	σ_y	R_m	δ	K_{Ic}	${old S}_{oldsymbol{m}}$	E	σ_y	$oldsymbol{R_m}$	δ	K_{Ic}	FAD	${old S}_{oldsymbol{m}}$	ν	T.C.
		GPa	MPa	MPa	%	MPa√m	MPa	MPa	MPa	MPa	MPa	MPa√m	MPa	MPa	/	mm/m
$Titanium^{(1)}$	Grade V, ⊥	118	830	900		100	692	126	1643	1673		58	976	813	0.3	1.7
	Grade V,	126						135								
$Aluminium^{(2)}$	A7075	70	480				400	79	490	650		25	412	343	0.33	4.2
Magnetic Steel ⁽³⁾	Armco	224	210	286			175	213		975		25	437	364	0.3	2
Magnetic Steel ⁽³⁾	Magnetil	200	115	249			96	200		723		30			0.3	2
Stainless Steel $^{(4)}$	SS316LN	193	238	565			198	210	610	1455				508	0.28	2.95
		30	257				214	30	496					413	0.3	2.44
$G10^{(5)}$	\perp tens.	5.6	20				17	5.6	20					17	0.3	7.06
	\perp compr.		420				350	5.0	749					624		
Nitronic 40 ⁽⁶⁾		225	682	889	31	>438	568	210	1427	1813	11	118		1189	0.3	2.6
$ODS \ Copper^{(7)}$	C3/30	110	270	350	13		225	110	340	540	20			283	0.3	3.1
Aluminum Bronze ⁽⁸⁾	C61400	109	410	574	40		342	112	568	927	52			473	0.3	3.12
Aluminum Bronze ⁽⁹⁾	C63000							133	578	918	6.2			482		
Aluminum Bronz $e^{(10)}$	C64200	109	197	556	64		164	130	306	758	70			255		
Phosphor Bronz $e^{(10)}$	C52100	113	122	321	60		102	126	247	578	75			206		
Phosphor $Bronze^{(10)}$	C51000	110	147	360	72		123	132	315	639	66			263		

TABLE I SUPERCONDUCTING MAGNETS MATERIAL PROPERTIES

⁽¹⁾ [6], [7], [8], ⁽²⁾ [9], [10], ⁽³⁾ [11], [12], [13], ⁽⁴⁾ [7], [14], ⁽⁵⁾ [7], ⁽⁶⁾ [14], [7], [15], [16], ⁽⁷⁾ [17], [18], ⁽⁸⁾ [9], ⁽⁹⁾ [19], ⁽¹⁰⁾ [20]

G. Vallone et al., A Review of the Mechanical Properties of Materials Used in Nb3Sn Magnets for Particle Accelerators, IEEE Transactions On Applied Superconductivity, 2023

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

State-of-art of Failure Criteria

What can it be defined as **'strength'** in superconducting coils?

- > Anything that would reduce performance (e.g. critical current reduction);
- > Actual failure of some part of the composite (e.g. filament cracking, debonding).

State-of-art of failure criteria:

- Non-interacting: Transverse/Azimuthal stress < 150/175 MPa (From measurements on transversally loaded cables)
- Interacting: Von Mises equivalent stress < 150/200 MPa (From comparison between models and magnet performance)

Both should **not** be applicable to composite materials.

Initial run with 1D loading (y-direction) to verify our sample, test and imaging set-up.

Sample polished with vibratory polishing, coated with Au/Pd and then analyzed with SEM

Many cracks to count, so ML developed to help.

Only central portion of the stack investigated due to lack of time.

Result consistent with literature findings:

- Cracks start to appear at ~120 MPa;
- > Numerical model results are not far from reality!

Strand Strength – Measurement Set-Up I

Stack holder designed to apply a **bi-directional load**:

- Belleville springs to control/'measure' the applied pre-stress;
 - 3 springs in parallel: 60 MPa on a 4 stack.

Fuji films used to control the uniformity of the applied loads:

MS on sample short edge and HS+HHS on long edge (additional Fuji below the wings of the sample holder).

Strand Strength – Measurement Set-Up II

Vertical pre-load applied to avoid buckling:

• First test article buckled at ~ 15 MPa.

In principle, 7 samples to test under bi-axial loading conditions.

During the test, some samples slided at around 50 kN. The re-load showed sliding at the same load.

Test repeated without spherical washer \rightarrow No sliding.

Fuji Paper – 2D Testing

- Very good uniformity of the load applied by the wings;
- > No marks on the 'ground' Fuji paper: ~ All the load is going through the sample.

0 MPa

M. D'Addazio

20 MPa

G. Vallone et al., Measurement and Computation of Nb3Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions, IEEE Transactions On Applied Superconductivity, 2023

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

Magnetic Analysis - I

- Layers 1-2: HTS (Bi2212)
 Layers 3-4: LTS1; layers 5-6: LTS2 Both Nb3Sn
- Strands [mm]: 0.9 1.1 0.8
 Turns[-]: 36 40 44
- Cable width [mm]: 18.59 24.38 19.50
- Stabilizer/Superconductor [-]: 3 1 1.8
- Coil width [mm]: 143
- Current [A]: 13500
- Peak field [T]: 20.45 15.95 13.6
- Margin [%]: 87 84 87

V. Marinozzi, P. Ferracin, G. Vallone, Conceptual design of a 20 T hybrid cos-theta dipole superconducting magnet for future high-energy particle accelerators, *Applied Superconductivity Conference*, 2022.

Magnetic Analysis – II

Version 28								
Layer	Bpeak	Jo	Lorentz Stress					
/	[T]	[A/mm2]	[MPa]					
1	20.3	360	-110					
2	18.0	360	-138					
3	15.8	229	-128					
4	13.7	229	-129					
5	13.2	379	-175					
6	12.0	379	-145					

Assumed Mechanical Limits:

- **Bi2212** (layers 1, 2): 120 MPa
- Nb3Sn (layers 3 to 6): 180 MPa

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

Mechanical Analysis – Infinitely Rigid Structure I

Mechanical Analysis – Infinitely Rigid Structure II

Equivalent Stress

Mechanical Analysis – Real Structure

Infinitely Rigid Structure

Mechanical Structure

Thickness: Collar – 25 mm Pad – 50 mm Yoke – 320 mm Shell – 80 mm **Characteristic:** Friction: 0.2 Layers 1 - 4: Spar + ribs Layers 5 – 6: Pole + Wedges Interference: 2 mm on the horizontal key \rightarrow first attempt for the max allowable stress in the shell

Mechanical Analysis – Cases Comparison

Case 1) Free coils in layers 1 – 4 Coils bonded to wedges in layers 5 – 6

Case 2) Free coils in layers 1 – 4 Coils bonded to wedges in layers 5 – 6

No constraints in layers 1 – 2 (by D. M. Araujo)

Mechanical Analysis – Coils

Case 2

Equivalent

 $(\bigcirc$

S

Stress

Mechanical Analysis – Mandrel I

All cases) On the mandrel, starting from the midplane and moving along the circumference at the same radius r_0 , there is first tension and then compression.

Case 2) Peak stress concentrated in the area where the constraints are removed.

U.S. DEPARTMENT OF

ENERGY Science

Office of

Mechanical Analysis – Mandrel II

Cooldown

Case 1

Case 2

Case 2) The peak stress is concentraced where the constraints are removed. The stress distribution on the layer 1 is better than the one encountered in the case 1.

Equivalent

Stress

Mechanical Analysis – Mandrel III

EM forces

Case 1

Case 2

Case 2) Stresses on the mandrel are significantly improved.

Equivalent Stress

Mechanical Analysis – Pad

Both case 1 and case 2 show similar results.

U.S. DEPARTMENT OF

ENERGY Science

Office of

It is not clear the reason of the location of the maximum tensile stresses.

Overall, the retrieved results do not present critical issues compared with the limits imposed in the material properties table.

Mechanical Analysis – Yoke

Also the yoke does not have major issues, so we are currently focusing on other parts of the mechanical structure.

Mechanical Analysis – Shell

Pre-stress

The peak azimuthal stress is roughly 180 MPa.

As a first attempt, we set the limit roughly equal to 150 MPa at room temperature.

Azimuthal

Stress

Outline

- Design Criteria
- Measurement and Computation of Nb₃Sn Rutherford Cables Strength Under Multi-Axial Loading Conditions
- Magnetic Analysis
- Mechanical Analysis
- Results Summary

Results summary

Measurements of cable stacks under transversal pressure:

- Cracks appear at around 120 MPa under 1D loading;
- Cracks disappear when the horizontal pre-stress is increased;
- \succ Investigate the failure surfaces $S(\sigma_x, \sigma_y, \sigma_z)$ at room temperature and at cold condition.

Comments on the mechanical structure model:

- Limits are exceeded in the mandrel (bending);
- Peak stress localized in the corner of the coils;
- Mechanical structure optimization.

