

# Nb<sub>3</sub>Sn CCT Program Updates And Test Results

USMDP Bi-Weekly Meeting - 10/11/2023 D. Arbelaez, L. Brouwer, P. Ferracin, G.S. Lee, M. Marchevsky, S. Prestemon, J. L. Rudeiros Fernandez, T. Shen, J. Swanson, R. Teyber, G. Vallone



### Outline

- General Updates
  - CCT subscale updates and plans
  - CCT6 updates and plans
- Application of improved quench localization method on CCT SUB2/3
- Test results from CCT SUB6 (full wax magnet) – Maxim will cover acoustic data in next presentation

### CCT Subscale

- Completed first test of CCT SUB6 (full wax magnet)
- Preparing for test of CCT SUB6 after thermal cycle
- Upcoming subscale CCT's (over next year: order not yet decided)
  - Stycast Impregnation
  - Telene Impregnation
  - Filled wax impregnation (motivated by recent PSI work)

### Plans for TELENE impregnated Subscale CCT at LBNL

- TELENE shows promising training improvement on undulator coils (work by E. Barzi)
- Will initially perform testing of resin transfer and fill quality on flat plate setup for application to CCT impregnation
  - Same setup that is used for Stycast testing
  - Flat plate with grooves to insert cable
  - Uses consumable materials for resin transfers (vacuum bag, flow media, peel ply)
- Flat plate tests will be used to determine if same materials are compatible with TELENE impregnation (relative to resin cure temperature and pot life)

Resin Impregnation Test Setup



#### Subscale CCT Impregnation



Effort led by Jose Luis Rudeiros Ferndandez

# **CCT6 Modeling Updates**

• Baseline structure design is complete

10/11/2023

- Completed baseline 3D analysis with epoxy impregnated coils (bonded contacts)
- Working final optimization of detailed coil parameters







5

Work by M. Juchno and L. Brouwer

## **CCT6** Fabrication Updates

- Completed 7 turn test coil winding, reaction, impregnation test in early 2023 (machined by SMP machinist)
- Second test mandrel was machined by main LBNL shop with small adjustments to groove geometry
  - Loss of experience in moving work to LBNL shop (SMP machinist left LBL)
  - Machining quality was not good enough to obtain meaningful results
  - Machining time was not scalable for full length coils

First short coil after reaction



# CCT6 Next Steps

- Design and Analysis
  - Investigate cases with different bonding scenarios between cable and groove
  - Analysis of segmented mandrel mechanics
  - CAD design of key-and-bladder structure
- Mandrel Fabrication
  - Main shop will gain experience and optimize process on machining of flat plates
  - Will build 20 turn inner layer test coil with four slightly different groove geometries
  - Will select best groove geometry and machine full length inner layer (mandrel with final basic dimensions has been purchased)
- Fabrication Technology
  - Investigating possible use of filled wax for CCT6
  - Investigation of options for mandrel segmentation

# Quench localization Analysis (SUB2 and SUB3)

- Performed updated quench localization analysis in SUB2 and SUB3 quench antenna data
- Goal is to improve understanding of how stress state impacts training (stress is strongly dependent on angle)
- SUB2
  - Baseline magnet (1.5mm thin spar)
  - Three tests performed (thermal cycle 1, thermal cycle
    - 2, disassembly / reassembly)
- SUB3
  - Inner layer has thick spar (8 mm)
  - Two tests performed (thermal cycle 1, thermal cycle 2)

Baseline Magnet (Thin Spar)



CCT Sub3: Thick Spar L1



### **Quench Localization Analysis**

- Extensive analysis was performed by R. Teyber
  - Combine Vtap and quench antennas to localize quenches
  - Histogram bins to 15, 45 or 75 degrees based on antenna element with largest measured flux
- New method was recently introduced to improve the resolution of angle localization by using correlation between antenna segments



### Improved Quench Localization Method

- Define Correlation parameter as  $C_{ij} = \int_0^{t_0} |\varphi_i \varphi_j| dt$
- Improve localization by accounting for signals from neighboring antenna elements
  - Cross-Correlation between neighboring antennas
  - Self-Correlation of neighboring antennas
- Use Quench simulations to determine relationship between correlation parameters and quench initiation angle



5º Simulation





Straight cable simulation performed by Ruben Keijzer & Gerard Willering

### U.S. DEPARTMENT OF Office of Science 10/11/2023

## Improved Quench Localization Method (cont.)

- Find quench location segment by identifying maximum C<sub>ii</sub>
- Within this segment compare the normalized values of the two neighboring self and cross-correlation values
  - Neighbor self-correlation difference:  $(C_{i+1,i+1} C_{i-1,i-1})/C_{i,i}$
  - Neighbor cross-correlation difference:  $\binom{C_{i+1,i}-C_{i,i-1}}{C_{i,i}}$

Office of

Science

10/11/2023

• Use fit function derived from simulations to determine angle for each case (should be consistent)



 $f(\theta) = -\frac{\tan(b\theta)}{\tan(b\pi/12)}$ 

## Training Results for SUB2 and SUB3

- Sub2
  - Has strong knee in training behavior for first thermal cycle and after reassembly
  - Training rate seems to decrease after each thermal cycle
- Sub3
  - Less pronounced knee in training behavior (reaches "slow" training after only 2 quenches)
  - Training rate is similar for both thermal cycles

10/11/2023

Office of



### **Quench Localization SUB2 and SUB3**

### CCT Subscale 2



### CCT Subscale 3



- Dashed lines represent Vtap segment
- Color represents quench number

# Quench Localization SUB2 (symmetric)

#### Observations

Office of

Science

10/11/2023

- Relatively high number of quenches on first turn
- Quenches start at lower angles on thermal cycle 1 and move towards higher angles as training progresses
- Quenches are more concentrated at higher angles in thermal cycles 2 and 3 with almost no quenches near the mid-plane in thermal cycle 3
- High concentration of quenches at ~60° on thermal cycle 3





14

## Quench Localization SUB3 (symmetric)

### Observations

- No quenches on first turn
- Most early quenches are at an angle near ~60°
- Some later quenches near the midplane



Quench localization for SUB3 Thermal Cycles 1 and 2

### Quench Angle Localization Summary and Next Steps

- General trends for quench angle on thin and thick spar magnets have been established
- Simulations of debonding and training in CCT magnets are being performed by G. Vallone
- Will continue to use available information and tools to improve understanding of training mechanisms in these magnets



### Wax Impregnated Magnet Reaches Plateau On First Quench Inside the Coils

- First two quenches are outside of the coils
- Reach plateau on first quench inside the inner layer coil
- All quenches in same inner layer segment
- Quench current is the same to within 3 A on subsequent ramps
- Held current at 50 A below plateau for 5 minutes without quench



## Short Sample Current Analysis

- Short sample measurements performed on extracted strands at NHMFL (Jun Lu)
- Predicted SSL based on extracted strand measurements is 9.3 kA
- Magnet plateau reached at approximately 3% above predicted SSL
- Reason for this is not yet clear
- Witness samples from coil heat treatment are available but have not yet been tested due to current upgrade of short sample test facility



### Voltage Tap Layout



### First Quenches Start at the Leads

- First two quenches likely due to lead motion
  - Ramp A02: near return splice
  - Ramp A03: at negative NbTi lead



#### Voltage Signals: Ramp A02



U.S. DEPARTMENT OF

ENERGY Science

Office of

## Voltage Signals from Inner Layer Quenches

• All quenches start in segment A5A6

.S. DEPARTMENT OF

**ENERGY** Science

Office of

10/11/2023

- Propagation to segments A4A5 and A6A7 is observed (usually not observed in previous magnets where quench occurs with more margin)
- All quenches almost identical voltage signals



Inner Layer Segment Voltages for Three Different Quenches

### Comparison of Voltage Signals for All Quenches

- Voltage signal are nearly identical for all coil quenches
- Quench is occurring in the same location

J.S. DEPARTMENT OF

IERG

Office of

Science

10/11/2023



Voltage Signals for All Quenches in Relevant Voltage Tap Segments

### **Quench Antenna Analysis**

- Correlation integral method was not used for the analysis due to the much higher propagation velocity when compared to previous magnets (can likely be used with smaller integration time)
- Pole antenna is first to respond followed by neighboring antennas
- Quench is likely initiated at / near the pole region

10/11/2023

Science



### Comparison of Quench Antenna Signals for Various Quenches

- As with voltage tap signals, quench antenna signals are nearly identical for all quenches
- Quench is occurring in the same location



### Quench Location is Likely at the Peak Field Region

- Peak field occurs in layer 1 at the overlap with the first / last turn of the outer layer
- Slightly lower field in first / last turn of layer 1
- Intersection of voltage tap segment and pole quench antenna coincides with peak field region in the magnet



# Summary

- Demonstrated training free feasibility in subscale Nb<sub>3</sub>Sn CCT with wax impregnated magnet
- Continue to increase understanding of CCT mechanics and training through
  - Diagnostic methods, for example quench localization (quench antennas, Vtaps), acoustic methods (next talk by Maxim), and other novel techniques
  - Advance modeling methods (for example debonding / training model by G. Vallone)
- Continue to explore novel impregnation materials on subscale CCT magnets
- Subscale results are influencing design of CCT6 (exploring possibility of wax impregnation)
- CCT6 design progressing but fabrication progress has been slowed by machining issues