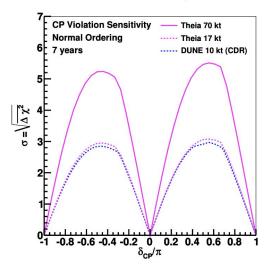
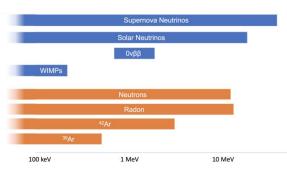

ND-GAr & Theia-ND


(A Match Made in Cavern?)

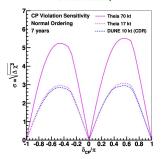

Mike Wilking
DUNE Phase 2 Workshop
Imperial College London
June 21st, 2023

- DUNE Phase 2 goal is to produce 2 new FDs, upgrade the beam, and upgrade the ND
 - Ongoing US P5 process may end up weighing in on these elements with regard to US funding
- Additional funding sources / new collaborators can substantially improve the odds of completing DUNE Phase 2
 - A WbLS detector (Theia) would grow the collaboration and accessible funding sources
- The various proposed enhancements for DUNE Phase 2 all involve improving our access to low energy physics
 - However, many challenges exist to reach low background levels in a future LAr detector
 - \circ Theia is specifically designed for low-E physics and will broaden our physics program (DSNB, SN burst, solar CNO, 0vββ, ...) and provide a complementary target nucleus + event reconstruction for the LBL program
- New FD detector technologies require new ND capabilities

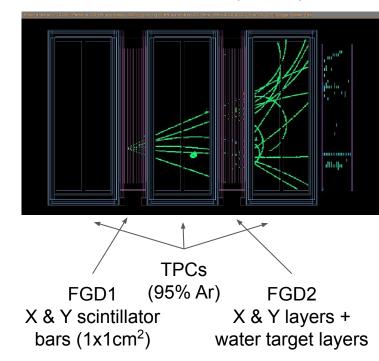
CP Violation Sensitivity

Brief Introduction to Theia

The European Physical Journal C 80 no. 5, (May, 2020)

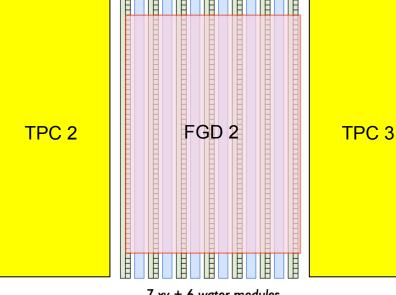

(slide from M. Wurm)

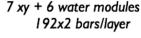
- Observe both Cherenkov and scinitllation light for each event
- At High-E, operates much like Super-K
 - with additional information about below-Cherenkovthreshold hadrons
- Low-E threshold is lowered
 - More photons near and below Cherenkov threshold
- Much more detail in a recent Phase 2 biweekly talk from M. Wurm

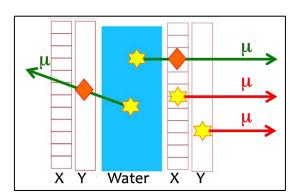


WbLS Near Detector Considerations

- A key component of LAr detectors is hadron calorimetry
 - Neutrino energy is the sum of the reconstructed lepton energy and the (corrected) deposited hadronic energy
- For water Cherenkov detectors, E_v reconstruction is performed with above-Cherenkov particles
 - The Theia LBL sensitivity studies were performed without utilizing scintillation light
- The primary requirement for a Theia near detector is to measure above-Cherenkov-threshold particles
 - This is the approach used for the primary T2K / Hyper-K near detector
 - Additional external measurements of Cherenkov/scintillation ratio may be helpful
 - Large R&D program with several WbLS detectors is currently underway

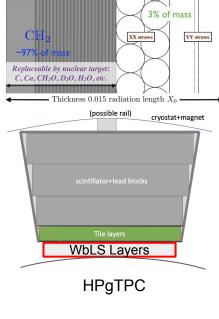



T2K Near Detector (ND280)



T2K Fine-Grained Detector (FGD2)

- T2K already employs water targets embedded within X & Y layers of scintillator bars
 - This reduced T2K's neutrino interaction uncertainties on water by ~30%
- One of the most important detector uncertainties is disentangling events occurring within water to events occurring in adjacent scintillator layers
- The key difference using WbLS is the water layers themselves can be instrumented
 - Surrounding scintillator layers are no longer a strict requirement
 - Must ensure a sufficient light yield to record MIPs

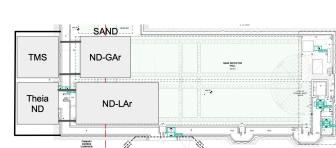

Phys. Rev. D 101, 11 (2020) pp.112004

Near Detector Concepts

- Several concepts are possible with varying levels of complexity
- SAND already exists, so adding targets for studying WbLS nuclei is possible
 - On-axis only, but this can constrain extended xsec models
- ND-GAr is a primary goal for a DUNE Phase-2 ND
 - Adding WbLS targets in the upstream ECAL is possible
- A dedicated Theia ND
 - o e.g. a WbLS Liquid-O
 - o e.g. a WbLS NOvA ND

Additional nuclear targets in SAND

WbLS targets in the ND-GAr ECAL


-5.0000-

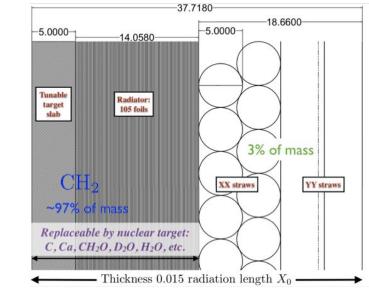
-14.0580

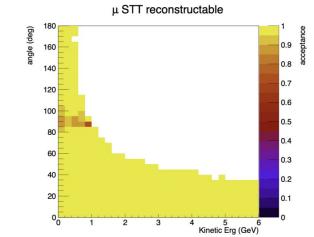
Radiator: 105 foils

Tunable target slab

Dedicated Theia ND

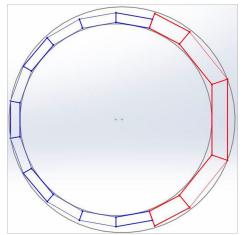
Least complex


Most


complex

C/O/H Targets in SAND

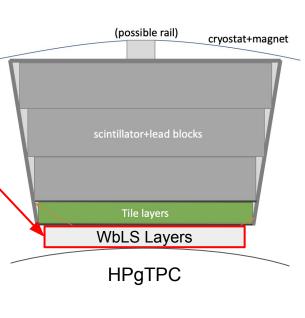
- See previous talk at this workshop from R. Petti
- Identical layers of different target nuclei produce event samples that can be simultaneously fit to constrain differential nuclear effects
 - This approach was tried in T2K with some success (~30% reduction in neutrino cross section uncertainties)
 - SAND should do better, due to more precise tracking, better resolution, better acceptance, and much higher statistics


Target	CP optimized FHC (1.2MW, 2y)				CP optimized RHC (1.2MW, 2y)			
	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e$ CC	$ar{ u}_e$ CC	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e$ CC	$ar{ u}_e$ CC
CH_2	13,010,337	624,330	192,118	31,902	2,035,973	4,870,562	91,004	69,278
Н	1,222,576	111,574	18,396	5,557	194,216	906,130	8,712	12,434
C	1,547,011	67,294	22,799	3,458	241,710	520,287	10,800	7,460
Ar	3,114,331	121,506	46,384	6,503	480,862	936,489	21,932	13,867
Pb	62,127,600	2,507,940	923,012	130,680	10,375,400	18,222,200	437,284	265,304



ND-GAr "Thin" Upstream ECAL

- The ND-GAr ECAL is most needed in the downstream direction
- The upstream portion has been redesigned to be "thin"
 - The thickness of the ECAL as a function of angle has not yet been optimized
- WbLS layers could be placed in the downstream portion of the upstream ECAL
 - <1 radiation length (i.e. preshower tracking layers)</p>

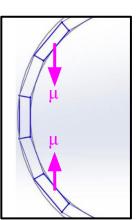


WbLS Inside ND-GAr ECAL

- WbLS layers would need to track
 X & Y positions
 - Optically segmented X & Y bars (NOvA ND) or 3D cubes (T2K sFGD)

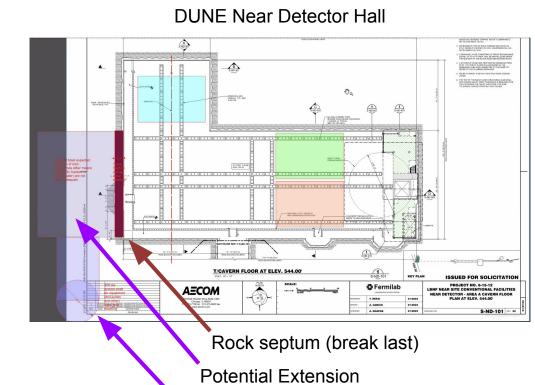
scintillator strips

- Or perhaps a non-segmented LiquidO detector with X & Y fibers
- A few cm WbLS layers provides ~1 ton of target mass
 - A few tons of WbLS in a 2.4 MW beam would produce:
 - \sim 1M v_{μ} -CC events per year on-axis (14 week run)
 - ~100k v_{II}-CC events per year 8m off-axis (2 week run)
 - ~10k v_{..}-CC events per year 28m off-axis (2 week run)
- Additional benefit: variation in detector configurations allows for sampling all of the muon angle phase space
 - The lack of muon acceptance near 90° was an important limitation of the T2K FGD+TPC configuration



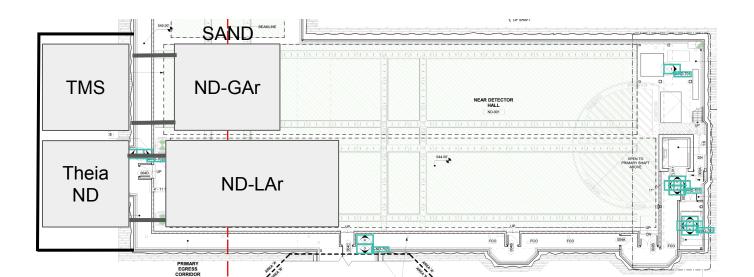
PCBs

MPPC readout

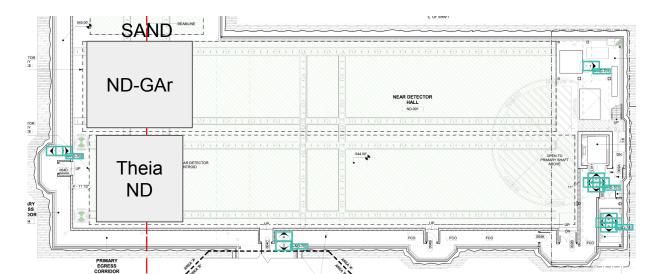

WLSF

Al frame

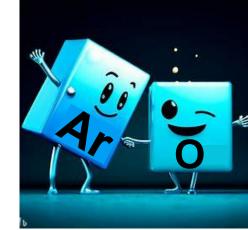
Possible ND Hall Extensions


- The Fermilab engineers leading the development of the Phase 1 ND Hall (Tom Hamernik & Kennedy Hartsfield) took a preliminary look at technical feasibility of extending the ND Hall
 - How do we protect detectors that are already installed?
 - Is there enough space to deploy excavation equipment?
- Proposed solution is to create a small 3rd shaft and excavate the additional cavern space (last step: break barrier)
 - Initial look from Fermilab site rock experts revealed no show stoppers
 - Additional study on the impact of vibrations on detectors is needed
- The PRISM range can then be extended, enabling additional detectors

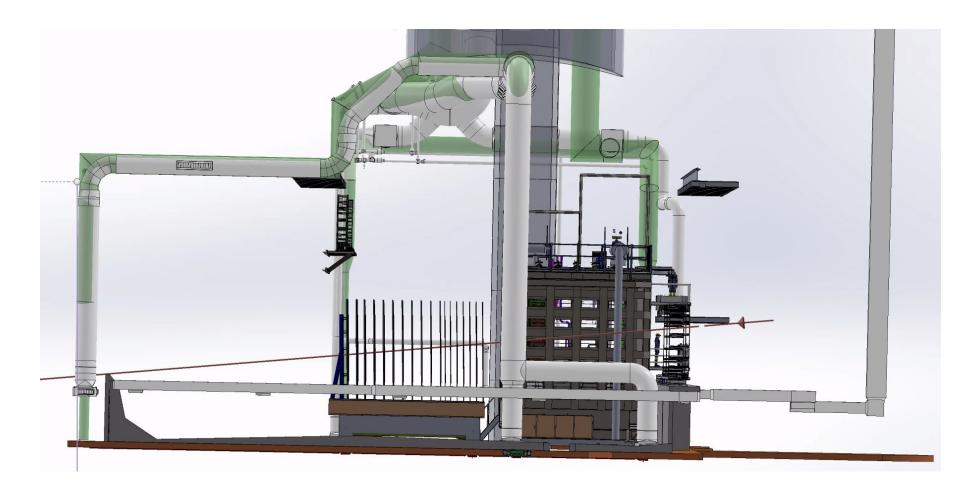
Small 3rd Shaft


A Dedicated Theia Near Detector

- If the long dimension of the ND Hall can be slightly extended, it may be possible to install a dedicated Theia ND
- The disassembly of TMS is very time consuming and may delay the installation of ND-GAr
 - Instead, TMS could be reused as the muon catcher for a Theia ND
- All 4 detectors could then be moved to different locations along the PRISM rails

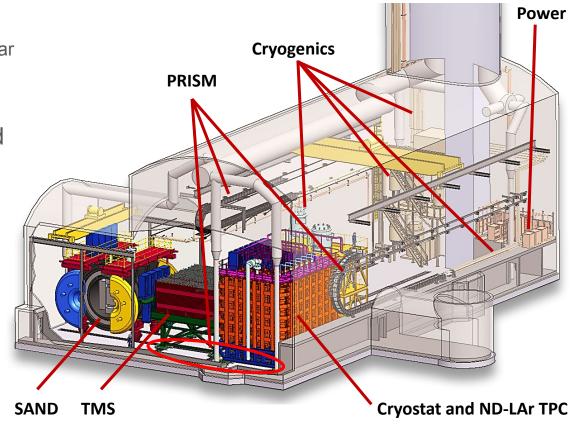

A Dedicated Theia Near Detector II

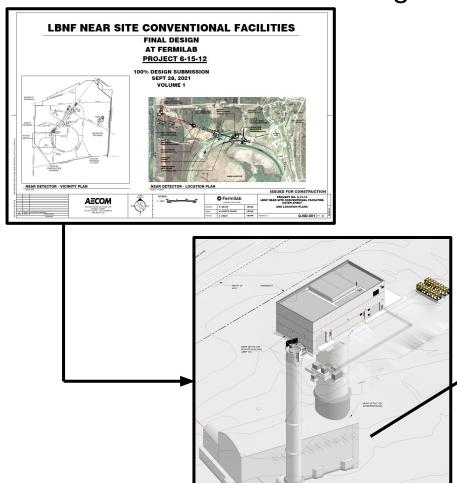
- After many years of Phase 1 running and producing several rounds of DUNE oscillation results, we will likely collect sufficient statistics with ND-LAr for the full duration of DUNE
 - See my DUNE-PRISM talk from earlier today for caveats regarding beam stability
 - It is possible that ND-LAr may not be needed for DUNE Phase 2
- In this scenario, a Theia ND could be placed in front of ND-GAr
 - Any additional measurements required on Ar could potentially be made by ND-GAr

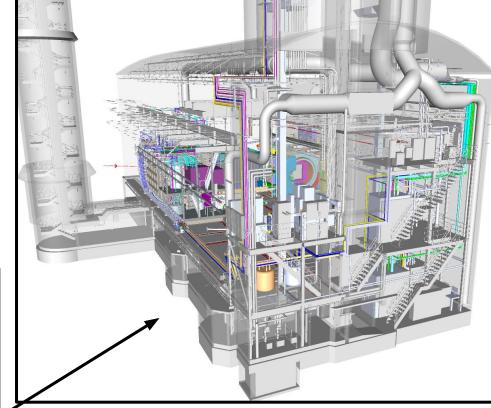

Summary

- Several near detector options exist for a non-Ar 4th FD module
 - o and they are all compatible with, and closely coupled to, ND-GAr
- Least complex: nuclear targets in SAND
 - Pros: straightforward to implement C/O/H targets and/or water targets
 - Cons: no additional handle on Erec vs Etrue from off-axis measurements
- More complex: WbLS layers in the ND-GAr ECAL
 - Pros: provides off-axis data and excellent tracking
 - Cons: must balance with ECAL performance; lower event rates must be studied
- Most complex: A new, dedicated Theia ND (e.g. Liquid-O or NOvA ND)
 - Pros: can be designed for high statistics measurements off-axis; possible reuse of TMS when ND-GAr is installed
 - Cons: Requires additional hall excavation, or removal of ND-LAr after multiple years of Phase 1 running
- If the LBL sensitivity can be demonstrated, a Theia far detector would broaden DUNE's physics program (after many years of Phase 1 running) to include a variety of interesting low-E physics phenomena

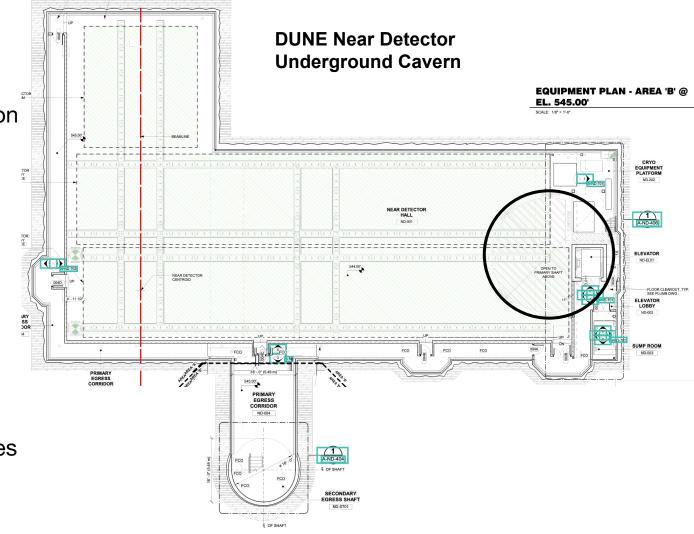
Backup


TMS View From Cavern Endwall

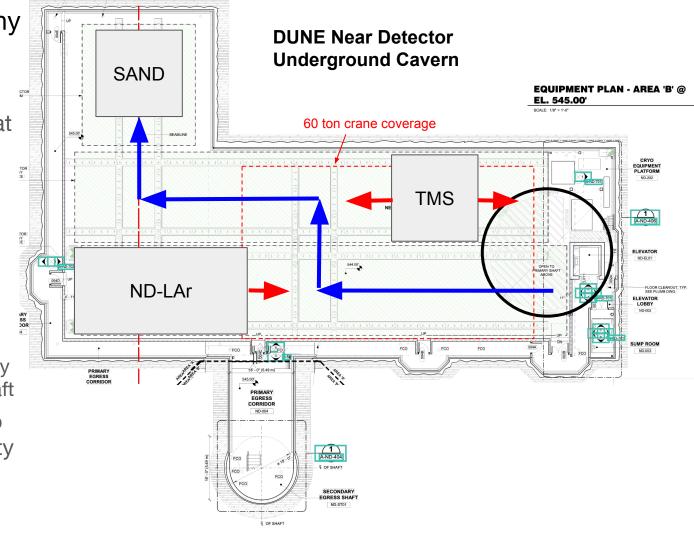

Near Detector Considerations


- Near detectors are an essential element of any LBL analysis
 - Measurements on the same nuclear target(s) as the far detector are required
- DUNE ND is currently designed around Ar
 - ND-LAr TPC: v-Target w/ similar technology to LAr far detectors
 - TMS: Spectrometer for muons escaping ND-LAr
 - PRISM: ND-LAr + TMS move off-axis to sample a variety of E_j
 - SAND: Beam monitor

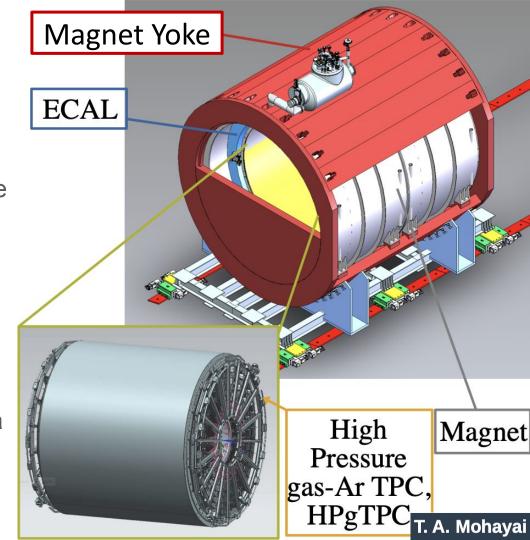
DUNE Near Detector Hall Design



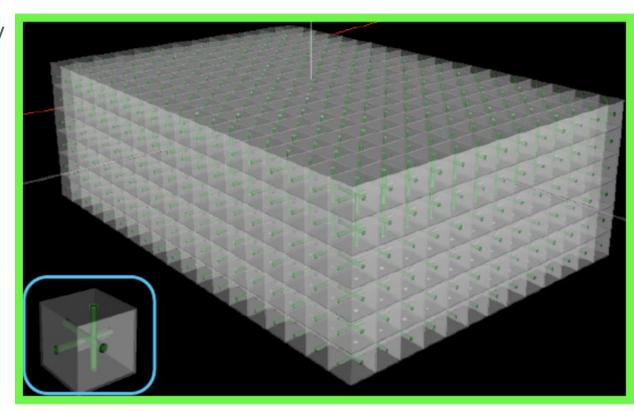
The near detector hall for DUNE Phase 1 is at "100% final design" (i.e. changes to the hall at this point would be very difficult)


Cavern Layout

- Red line: beam axis
- Off-axis travel direction is left-to-right
- 2 pairs of rails for ND-LAr and TMS
- 2 sets of "cross rails" (along the beam direction) for SAND
 - SAND can move between the TMS and ND-LAr rails
- The main shaft, elevator, and equipment mezzanines are on the right side


Detector Choreography

- The rail structure is designed to allow SAND to be installed at almost any time
- TMS and ND-LAr can move (via the PRISM system)
 - ND-LAr can temporarily move under the 60 ton crane coverage
 - TMS can temporarily move under the shaft
- Significant flexibility to accommodate a variety of installation scenarios


ND-GAr

- DUNE Phase 2 includes plans for an upgraded near detector
- The main option discussed so far is a high-pressure Ar gas TPC in place of TMS
 - Lowers the momentum threshold for detecting particles escaping the Ar nucleus
 - \circ Cleaner measurements of multi-particle final states (e.g. reduces π^+ scattering, γ-conversions, etc.)
- This detector still must function as a muon catcher for ND-LAr
 - Goal is to minimize dead material between ND-LAr and ND-GAr

Super-FGD -> WbLS cubes?

- The Super-FGD currently being constructed for T2K consists of 1 cm³ scintillator cubes
- Can we incorporate
 WbLS cubes into a
 Super-FGD structure for
 DUNE?
 - For either a dedicated detector or for embedding into ND-GAr?

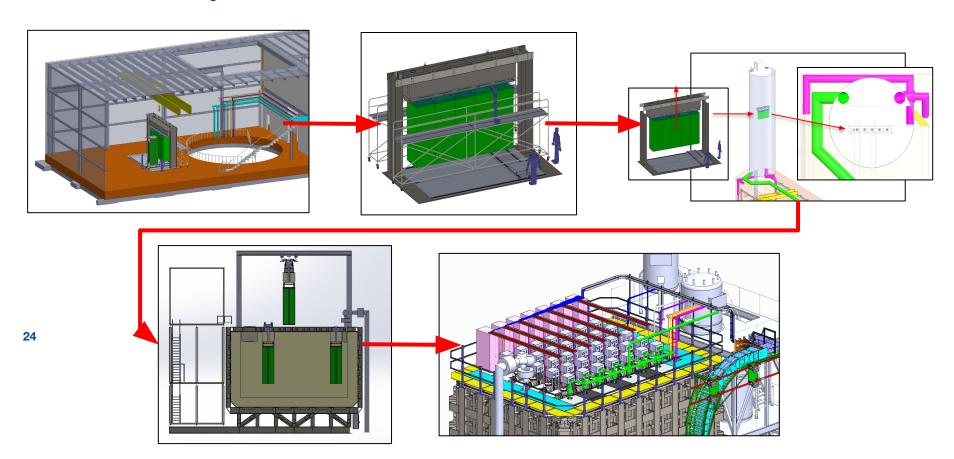
DUNE FD-TDR Cross Section Model

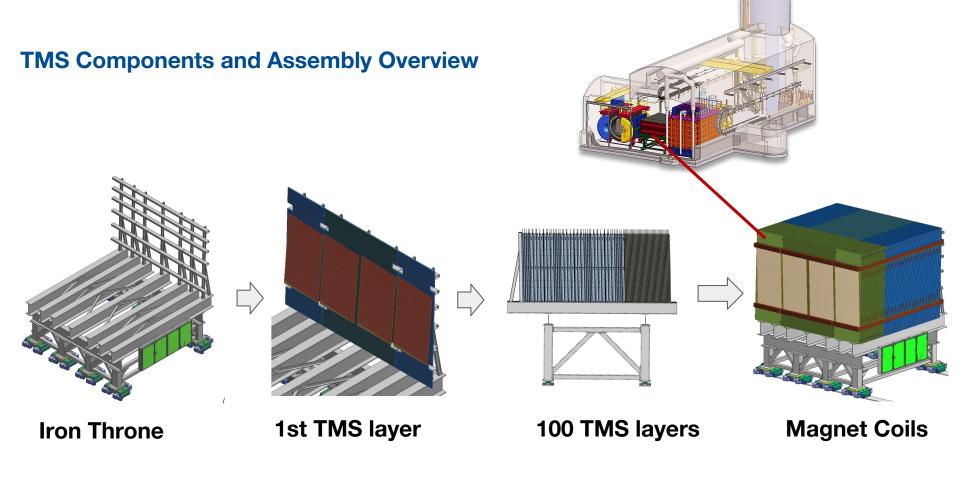
- Uncertainties included for:
 - Exclusive interactions (QE, Res, SIS/DIS)
 - Final state interactions (FSI)
 - Nuclear effects (RPA, 2p2h)
 - Flavor ratios (v_e/anti-v_e)
- A similar set of uncertainties will be needed for C/O/H
 - Fortunately, these nuclei have been studied more extensively
 - Specific expertise in v-N modeling and GENIE is needed (& communication with DUNE DIRT2/NIUWG)

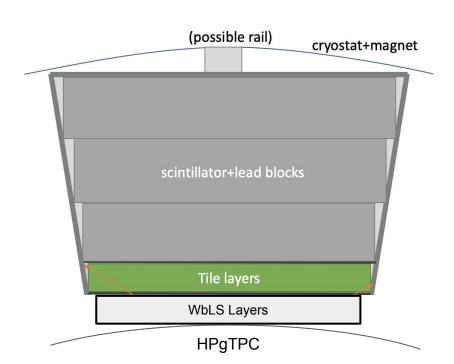
GENIE Xsec Parameters

Description	1σ
Quasielastic	
$M_{ m A}^{ m QE},$ Axial mass for CCQE	$^{+0.25}_{-0.15}~{ m GeV}$
QE FF, CCQE vector form factor shape	N/A
$p_{\rm F}$ Fermi surface momentum for Pauli blocking	$\pm 30\%$
Low W	
$M_{\Lambda}^{\mathrm{RES}},$ Axial mass for CC resonance	$\pm 0.05~{ m GeV}$
$M_{ m V}^{ m RES}$ Vector mass for CC resonance	$\pm 10\%$
Δ -decay ang., θ_{π} from Δ decay (isotropic \rightarrow R-S)	N/A
High W (BY model)	
A_{HT} , higher-twist in scaling variable ξ_w	$\pm 25\%$
$B_{\rm HT},$ higher-twist in scaling variable ξ_w	$\pm 25\%$
$C_{ m V1u},$ valence GRV98 PDF correction	$\pm 30\%$
$C_{{ m V2u}},$ valence GRV98 PDF correction	$\pm 40\%$
Other neutral current	
$M_{ m A}^{ m NCRES}$, Axial mass for NC resonance	$\pm 10\%$
$M_{ m V}^{ m NCRES}$, Vector mass for NC resonance	$\pm 5\%$

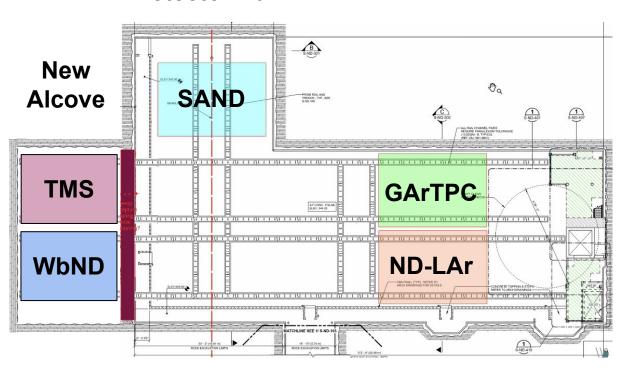
GENIE FSI Parameters


Description	1σ
N. CEX, Nucleon charge exchange probability	$\pm 50\%$
N. EL, Nucleon elastic reaction probability	$\pm 30\%$
N. INEL, Nucleon inelastic reaction probability	$\pm 40\%$
N. ABS, Nucleon absorption probability	$\pm 20\%$
N. PROD, Nucleon π -production probability	$\pm 20\%$
π CEX, π charge exchange probability	$\pm 50\%$
π EL, π elastic reaction probability	$\pm 10\%$
π INEL, π in clastic reaction probability	$\pm 40\%$
π ABS, π absorption probability	$\pm 20\%$
π PROD, π $\pi\text{-production}$ probability	$\pm 20\%$


Additional Xsec Parameters


Uncertainty	Mode
BeRPA [A,B,D]	$1p1h/\mathrm{QE}$
${\rm ArC}2p2h~[\nu,\bar{\nu}]$	2p2h
$E_{2p2h}~[\mathrm{A,B}]~[\nu,\bar{\nu}]$	2p2h
NR $[\nu,\bar{\nu}]$ [CC,NC] $[n,p]$ $[1\pi,2\pi,3\pi]$	Non-res. pion
ν_e PS	$\nu_e, \overline{\nu}_e$ inclusive
$\nu_e/\overline{\nu}_e$ norm	$\nu_e, \overline{\nu}_e$ inclusive
NC norm.	NC

Eur. Phys. J. C 80, 978 (2020)


ND-LAr Assembly Process Overview

DUNE Near Detector Hall

DUNE Near Detector Hall

DUNE Near Detector Hall

