Performance of RC6, a sister racetrack coil of the record performance RC5

Tengming Shen¹, Daniel Davis^{1,2,*}

- 1. Lawrence Berkeley National Laboratory
- 2. National High Magnetic Field Laboratory

May 30, 2018

Test: Daniel Davis^{1,2,*}, Marcos Tuerqueti¹, Hugh Higley¹ Fabrication: Hugh Higley¹, Jim Swanson¹, Daniel Davis^{1,2,*} Reaction: Ernesto Bosque², Lamar English² Conductor qualification: Jianyi Jiang² Lead: Tengming Shen¹

Work supported by U.S. DOE OHEP through the U.S. Magnet Development Program.

LBNL HTS (2212) subscale magnet program topped with new RC-06 result

Subscale coils allow fast-turnaround test of cable and magnet-relevant technologies.

RC5 and RC6 conductor, the wire PMM170123, was fabricated by Bruker OST with nGimat LLC using a new, Nanospray powder developed with support from DOE SBIR/STTR grants and donated to LBNL. ²

LBNL RC-1,2,3,5,6 in FSU OP furnace

RC coils show high stability: I_q increases with increasing ramp rate (tested up to 200 A/s)

RC coils are predictable: (1) A clock magnet with quench current varying less than +/- 10 A for repeated quenches and with no quench training

RC coils are predictable: (2) "A quench is coming".

Watching the coil resistive voltages growing with increasing current, at a resolution of 10⁻⁵ V, and knowing a quench is coming. This is not possible with LTS magnets and a result of high stability of HTS magnets at 4.2 K.

RC6 Test A3, before any actual quenches.

Detecting resistive voltages, going to a lower current, no quench.

RC coils are predictable: (2) "A quench is coming". The growing resistive voltages can be detected at a resolution of 10⁻⁶ V for dedicated, high-field conductor regions.

RC5 – E-J characteristics defined with a stair-case I(t) run – a global superconducting transition

Recommend to operate magnets below $I_c(0.1 \text{ mV/cm})$, about 10% lower than their I_{a} .

What is next? Reliability demonstration (with twisted wires) and going to new heights

RC1-6 made from wires not twisted. 2016 twisted CDP wires degraded and new fabrication parameters found in 2017 eliminated degradation, now applied in 2018.

RC9 + RC10, PMM170123 like (maybe twisted) + RC3 leakage control

RC7 + RC8, with twisted wires

RC7-10 – same 2018 CDP wire, batch processing; wire delivered; cables to be made.

Quench protection with CLIQ for 2212 – Daniel Davis

RC7 + RC8 in LBNL subscale-magnet structure

RC7 + RC8 – likely 12 turns/layer Instead of 6 turns/layer.

Opera by Laura Garcia Fajardo

Daniel Davis – FSU PhD thesis work

Moving along with CCT demo – BIN5 OL

- Cables ready and HT fixture assembly being manufactured.
- Coils to FSU in ~2 months.

CAD by Ray Hafalia Jr.

Summary

RC6 – a new record.

- High stability and lack of training.
- Predictive "A quench is coming."
- Predictive "I_q fluctuates by +/- 10 A."
- Global V-I transition defined.
- Racetrack coil program what is next?
- CCT BIN5 is coming.

