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Summary of high-field magnet technology related R&D
results for 2212

Test of key elements of a 2212 coil technology
* Very high J, with new powders (>1 kA/mm? at 30 T)

* Long length round wire conductor (~1 mile) that looks like LTS
conductor

. Conductor insulation
. Successful internal reinforcement of coils

 Good handling of OPHT (50 bar, ~50 cm homogeneous zone after many
modifications)

* Demonstrated persistent 2212-2212 joints
 Started looking into more advanced quench protection



2212 Test Coils
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About 1 km of conductor
each!

We build Coils of various sizes
from small bobbins to fully
instrumented larger coils for in-
field testing applying analysis
lead design

Serve as confidence builders for
larger high-field coils like
Platypus and beyond (testing
new concepts, models,
manufacturing procedures)



Coil Tests: Rikys and Pups
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* Epoxy impregnated, partially and targeted reinforced coil ’ : 0

Riky-1 experienced fast ramp to 410 A (8 T background) and degraded

In subsequent tests reached 275 A repeatedly without further degradation

Model predicted ~0.6 % strain at 300 A

Riky-2 clearly showed improved stress management compared with Riky-1 and did not reach its predicted strain limit
Reached 528 A and quenched due to introduced heat from external leads

Both coils could be load-cycled close to transition many times without further degradation



Test Coil Riky-3

* Clearly showed that the FEA modeling
works to DFEdiCt coil performance, 348 A Riky-3 Performance Prediction in C-213 Magnet @ ~8 T
predicted for onset of damage 700

* The first trip was observed at 350 Al

* Very clearly not an Ic transition but rather
a strain induced trip
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* In no-reinforced condition the outer layer ?400 P
would have experienced a stress of ~300 5300 | 3310v04633.028x+ 4961 T .
MPa: reinforcement is effective 200 RP=1.000 g

* Showed saturation of /_ retention on 100 P
subsequent quenches . ‘-

* Below onset of thermal runaway the coil o 01 02 03 04 05 06 07 08
could be load-cycled many times Azimuthal Percent Strain [%]

e 3]

Predicted peak strain expected for given Riky-
3 operating currents are shown as blue line
plotted against I /I , retention curve based on
data by C. Scheuerlein*, CERN

*R. Bjoerstad, C. Scheuerlein, M. Rikel et al., Supercond. Sci. Technol. 28 (2015) 062002 >



Test Coil Riky-3 contd. | cwswrsramy
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* 0.6 % strain is associated with the cliff - onset of damage

Riky-3 Performance Prediction in C-213 Magnet @ ~8 T
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Advances in Bi-2212 Conductor Strengthening

* Low aspect ratio applied to preserve
electro-magnetic isotropy of wire

Measurements on OPHT processed wires
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* Shown here is a wire bonded with reinforcement tape 0 I
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
made by Solid Materials Solutions (SMS, Alex Otto) Tensile Strain (%)

425 MPa at 0.4% strain versus 118 MPa for 2212/Ag
~3.5 fold benefit with 33% strip area (similar to SEI 2223 NX).

* Work on reinforced conductor and applications in coils is ongoing



Coil Tests: Field Hysteresis of Coils made

with Twisted Conductor
60 VSM Magnetization Loops UntWiStEd 2212: 19‘0
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Riky-5, made with Lot-82 conductor had low /.
Coil did not reach any critical strain value

Layer 4 Turn 1

Layer 4 Turn 4
Layer 4 Turn 5
Layer 4 Turn 6

Layer 4 Turn 8

\; iIBottom Side

Layer 1, 2,3
Turn 10

Systematic coil deconstruction revealed one small low /_section (layer 4, turn 5)




A Closer Look at Layer 4-Turn 5
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Insulation for Bi-2212 Conductor

Dip coating process with TiO, particles dispersed in a polymer

Polymer burns off leaving strong ceramic layer
' : * >1km lengths now being coated reliably

* Added alumino-silicate braid to improve
stand-off and winding pack integrity

* Tests at LBNL of thelr coated and bralded race-track
coils have also shown higher leak resistance along
with an improvement of transport properties

NHMFL Insulation line, Jun Lu, J. Levitan 11
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Our High Pressure Furnace is the Work Horse for Bi-2212 Caoil
Heat Treatment

Outer wall dia:
324 mm

Working Hot Zone
dia: 130 mm
Working Hot Zone
height: 430 mm

First-of-its-kind pressurized 6-zone furnace
built by Deltech

Currently largest OP furnace available for Bi- _
2212 heat treatment

Design parameters: 900 °C, 100 atm total
pressure, 500 mm hot zone — currently use
50 atm and the hot zone is 430 mm (130
mm dia.)

This furnace required extensive in-house
engineering to make it a robust, reliable
equipment

Successful heat treatment of many coils



Modified Furnace Based on Extensive Modelling —
Significantly Improved Heat Flow and Uniformity
Snapshot of temperature in furnace after heating 10 min

Before modification After modification
. Center of furnace Center of furnace
80 °C
70 °C
Top of -
60 °C heating 1~ i ! l
elements | I Center of furnace | I
so°oc  center O.f N | is already warm | ||
furnaceis - | and matches i ]
40°c  stillcold | ] furnace elements i ||
1
. Bottom of i I -
30°C heating —
elements

20 °C
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Modifying the Furnace Gives Improved Control of the
Furnace and the OP Heat Treatment

Before modification Aftgr modification
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Used same furnace settings and essentially identical thermal mass before and
after modifications

Improvements after modifications:
- Increased temperature in uniform hot zone
- Provided more precise control of cooling rates
- Raised temperature of lower zones - lengthened hot zone 14




Improved Temperature Regulation Gives More
Control of Time in the Melt

sample Tcdats|  I[mportant implications:

Time in the melt vs. Transport Properties

*Time in melt
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Bi-2212 time in melt
(t,c » time from melting
to re-solidification) is a
powerful parameter
controlling J,

Longer t,.., Yields lower
J

c

* Time in the melt curve derived from temporal behavior
of 16 sample TC data over 4 zones

15




Coils OPHT’ed in Deltech, for Maglab and Collaborations M

2/11/15 Platylong
2/18/15 Platypup-1
2/23/15 Platypup-2
6/01/15 Platypup-3
S oGl
8/31/15 Platypus Insulation Coil debilitating issue diagnosed as electrical
_ (Soved 2010 shorting through very thin TiO, coating
4/01/16 Riky-1
4/28/16 Riky-2
6/09/16 LBNL RaceTrack-1
7/26/16 LBNL RaceTrack-2 . . .
26/ acetrae — Transport issues at coil ends diagnosed as
10/25/16 RIKEN Heat distribution —— . . .
CERN/Twente thermal mass and heat sink issue during OPHT
1/07/17
Rutherford Cable ? . . . .
1/12/17 ol Coil * ... coils of various dimensions and shapes
1/30/17 Platypup-4 10 coil plus many, many other OPHT runs on short
- coils . .
Zi:ﬁ: LBNLE‘:‘*Z““ OPHT'ed samples, furnace balancing, and tuning
Iky- e .
Py Rk Due to many changes and improvements on
v in 2017 .
8/14/17 LBNL RaceTrack-4 furnace design and controls, furnace
8/17/17 LBNL RaceTrack-5 x operation has become increasingly
12/05/17 Riky-5 and Platypup-5

comfortable with a high rate of success .

01/29/18 LBNL RaceTrack-6 6




Racetrack Coils with Rutherford Cable

* Recent coils yielded exceptionally high transport
properties

 RC-01 through RC-05 all OPHT’ed

* RC-05 and 06 with better powder

' A N NATIONAL
- IMIAGLAB
OPHT + NEW conductor BERKELEY LAB \é)\g
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< ¥
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Year

Tengming Shen, LBNL



Coils in Collaboration with B-OST/Ol

Not only successes with own racetrack coils and

own solenoids but also with solenoids for others:

e 2212 coil made by Ol and successfully OPHT’ed
at NHMFL

b3
Wire dia. (mm) Coil height (mm) mm No. layers (-)
1.5 50 14 35.7 14

e Coil did not show any leaks after OPHT and
was shipped without impregnation and
arrived without damage at B-OST

*e At Ol, coil generated 2.75Tin 19T =
background when current limit of the power Before OPHT  After OPHT»
supply was reached at 400 A

*S. Ball et al., MT-25, Amsterdam, The Netherlands, 2017
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How Can We Make Bi-2212 Superconducting Joints?

~

Bi-2212 multifilamentary

round\qiire
—

Bi-2212/Ag
precursor

Ag Wi <
tchant g wir
/} ~ Exposed Bi-2212

‘/ﬁlaments

Heat treatment Ag plug\A
|

Mechanical
pressure
~890°C

U. P. Trociewitz, P. Chen et al., US patent No. 9,966,167 19

Experimental Joint
test configuration




Quench Protection in 2212 Coils

e CLIQ system put together in 2017 based

on E. Ravaioli’s design Daniel Davis

* Successful initial tests on Pup-4 inside

. . Charging Res Lead Resistance,
our 8 T magnet system (in s.f. and field) .. —
Switch Res. i
Peak Temperature Peak Inter-Filament leed Res. 0.075 Ohm HTS Magnet @_ HTS DC Supply
Coupling Losses e B inr ES ronr '

IR
=
900 =

3
S
S
3

T

Peak deposited loss [W/cn1']

Passive
Protection

700
600

LTS Magnet E
. v
g @_ LTS DC Supply

500
400

Temperature [K]

1300
200

100

More tests needed to fully understand and s
implement CLIQ into HTS quench protection system 20




Next Solenoid Plans

* Finish installation of the Cryogenic magnet

* Few more Riky and Pup coils in the meantime
— Riky-4bis, coil with SRW conductor (wound)
— Riky-6, Pup-6, reinforced coils, repetition of Riky-5 and Pup-5

* Thick test coils in Cryogenic magnet: 200 m/each (high stress coils)



