U.S. MAGNET DEVELOPMENT PROGRAM

# 20 T hybrid dipole R&D at Fermilab A.V. Zlobin







### Outline

- Introduction justification and goals
- Bi2212/Nb<sub>3</sub>Sn CT dipole design concept and parameters
  - presented at IPAC2023
- REBCO/Nb<sub>3</sub>Sn CT dipole design concept and parameters
  - will be reported in FERMILAB-TM-2807-TD in preparation
- Design comparison
- Summary and next steps

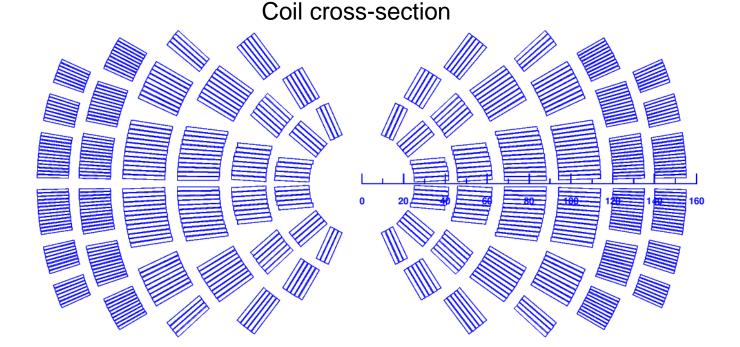




- 20 T dipoles are being considered for the next generation of particle accelerators.
- The nominal field of 20 T is above the practical limit of Nb<sub>3</sub>Sn accelerator magnets, and it requires using High Temperature Superconductors (HTS).
- High cost of HTS and complicated technology of HTS magnets make attractive a hybrid approach, which uses both materials and technologies.
- Several design options of 20 T dipole with a 50 mm clear aperture are being studied in the framework of US-MDP, including the Cos-theta (CT), Block-type (BL) and Common-Coil (CC) coil configurations.
- Design concepts of a hybrid dipole with 50 mm aperture and 20 T nominal field based on the CT (shell-type) coil with SM and a cold iron yoke have been developed at Fermilab.
- The magnet magnetic design and analysis are presented and compared with the similar magnet designs based on BL and CC coils.





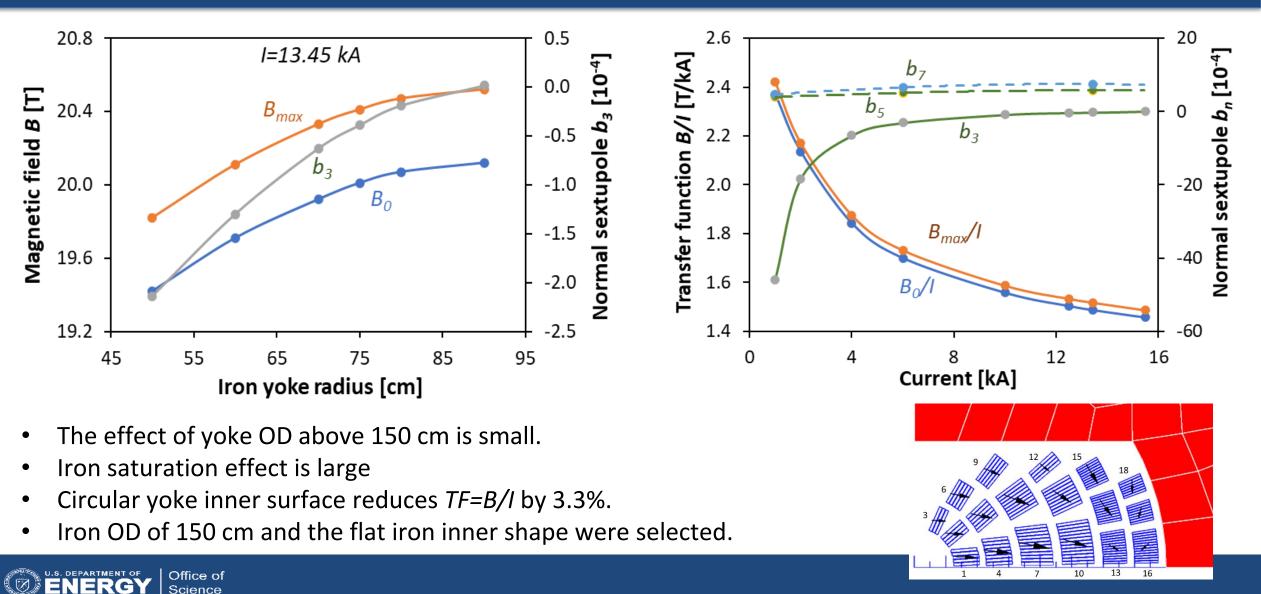

## Bi2212 and Nb<sub>3</sub>Sn cable and coil parameters

#### Cable parameters

| Parameter                                    | Cable 1 | Cable 2 | Cable 3 |
|----------------------------------------------|---------|---------|---------|
| Superconductor                               | Bi2212  | Nb₃Sn   | Nb₃Sn   |
| Strand diameter, mm                          | 1.0     | 1.0     | 0.7     |
| Cu/nonCu ratio                               | 3.0     | 1.1     | 1.1     |
| J <sub>c</sub> (15T;1.9K), A/mm <sup>2</sup> | 3750    | 2000    | 2000    |
| Number of strands                            | 32      | 40      | 40      |
| Cable width, mm                              | 16.5    | 20.1    | 15.0    |
| Cable small edge, mm                         | 1.85    | 1.70    | 1.22    |
| Cable large edge, mm                         | 1.95    | 1.90    | 1.38    |
| Cable packing factor                         | 0.83    | 0.90    | 0.81    |

### **Coil parameters**

| Parameter                                              | Value        |
|--------------------------------------------------------|--------------|
| Number of layers                                       | 6            |
| Number of blocks                                       | 6 HTS+12 LTS |
| Number of turns/coil, L1-2/L3-4/L5-6                   | 31/52/63     |
| Coil inner/outer diameter, mm                          | 50/310       |
| Bi2212 coil area/quadrant, mm <sup>2</sup>             | 972          |
| Nb <sub>3</sub> Sn coil area/quadrant, mm <sup>2</sup> | 3110         |




- The coil uses Rutherford cables made of Bi2212 (HTS) and Nb<sub>3</sub>Sn (LTS) composite superconducting wires.
- Turns are grouped into blocks separated by radial and azimuthal spacers to optimize the field quality in aperture and provide mechanical stress management in the coil.

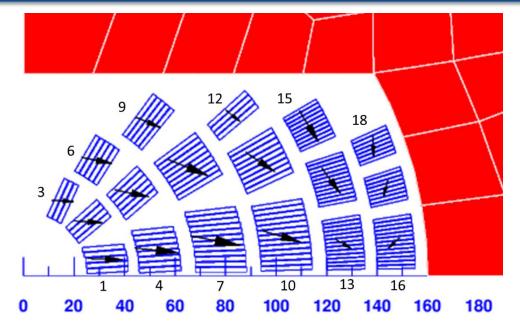




### Effect of the iron yoke






Rel. field errors (units 10<sup>-4</sup>)

## Field harmonics and magnet main parameters

19. 18. 17. 16. 15. 14. IIIIIIII 13. 12. 11. 10. 9. TILL THE STATE 8. 7. 5. 3. 0.

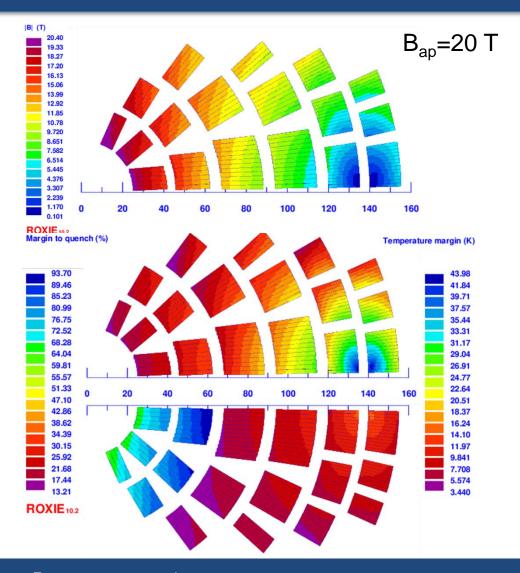
### Field harmonics at $R_{ref}$ =17 mm and B=20 T

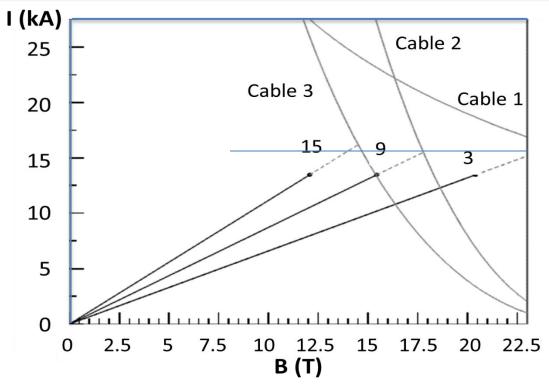
| n                    | 3     | 5    | 7    | 9     |
|----------------------|-------|------|------|-------|
| b <sub>n.</sub> 10⁻⁴ | -0.24 | 5.83 | 7.54 | -0.98 |



### Magnet parameters

| Parameter                                                              | Value     |
|------------------------------------------------------------------------|-----------|
| Coil nominal current I <sub>nom</sub> , kA                             | 13.45     |
| Coil nominal field B <sub>nom</sub> , T                                | 20.0      |
| Coil to aperture field ratio B <sub>max</sub> /B <sub>o</sub>          | 1.002     |
| Coil inductance @I <sub>nom</sub> , mH/m                               | 52        |
| Stored energy @I <sub>nom</sub> , MJ/m                                 | 4.7       |
| Lorentz forces F <sub>x</sub> /F <sub>y</sub> @I <sub>nom</sub> , MN/m | 14.9/-7.4 |



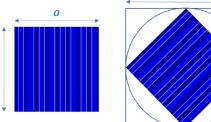

DEPARTMENT OF

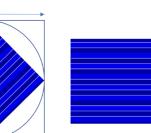
Office of Science

## **Magnet margins**

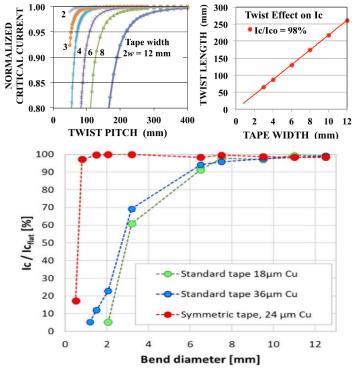





- B<sub>max</sub> is reached in block 3 for Cable 1, block 9 for Cable 2 and block 15 for Cable 3
- Margin to quench is 16.2% for Bi2212 coil (L1-2), 13.2% for Nb<sub>3</sub>Sn Coil 2 (L3-4), and 16.9% for Nb<sub>3</sub>Sn Coil 3 (L5-6)
- Magnet margins (T and Ic) are limited by the Nb<sub>3</sub>Sn coil




## REBCO/Nb<sub>3</sub>Sn hybrid dipole


- The HTS part uses Twisted Stacked-Tape (TST) REBCO cable
  - allows small easy-bend radius and twist
- REBCO/Nb<sub>3</sub>Sn coil cross-section was obtained by filling the radial space of 2L Bi2212 coil with 4L REBCO coil keeping the 4L graded Nb<sub>3</sub>Sn coil.
- The Nb<sub>3</sub>Sn cables have the same parameters as in 20 T Bi2212/Nb<sub>3</sub>Sn dipole.
- TST cable has a square stack of parallel 5-mm wide tapes.
- Due to stack twisting, the equivalent width *D* of rectangular cable cross-section is V2 larger than the REBCO stack width.











- For 4 mm wide 0.1 mm thick tape minimal L<sub>t</sub>~80 mm
- Minimal bending D~8 mm





## **Cable and coil parameters**

#### Cable parameters

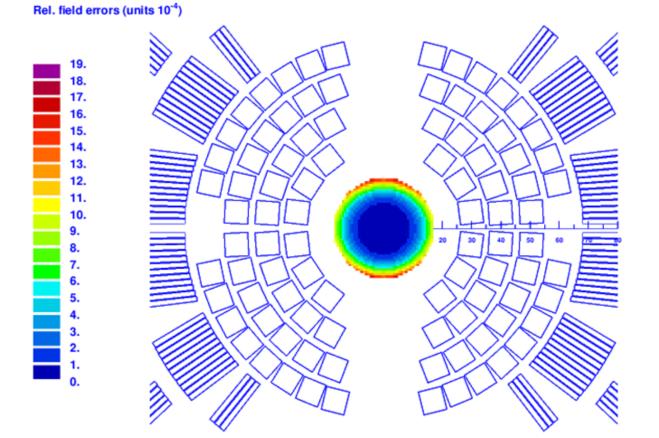
| Parameter                     | Cable 1 | Cable 2 | Cable 3 |
|-------------------------------|---------|---------|---------|
| Superconductor                | REBCO   | Nb₃Sn   | Nb₃Sn   |
| Strand size, mm               | 5×0.1   | 1.0     | 0.7     |
| Cu/nonCu ratio                | 0.67    | 1.1     | 1.1     |
| I <sub>c</sub> (15T;1.9K), kA | 23      | 29/35   | 14/17   |
| Number of strands             | 50      | 40      | 40      |
| Cable width, mm               | 8       | 20.1    | 15.0    |
| Cable small edge, mm          | 8       | 1.70    | 1.22    |
| Cable large edge, mm          | 8       | 1.90    | 1.38    |
| Cable packing factor          | 0.39    | 0.90    | 0.81    |

### **Coil parameters**

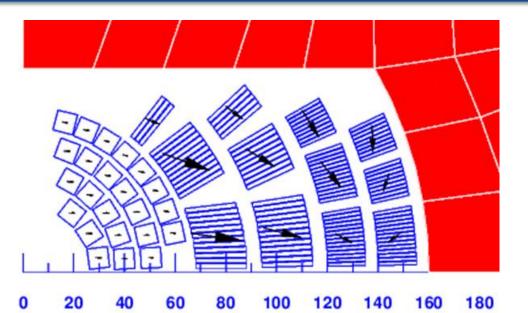
| Parameter                                              | Value      |
|--------------------------------------------------------|------------|
| Number of layers                                       | 8          |
| Number of HTS blocks                                   | 23         |
| Number of LTS blocks                                   | 12         |
| Number of turns in L1-2/L3-4/L5-6/L7-8                 | 8/15/54/65 |
| Coil inner diameter, mm                                | 50         |
| Coil outer diameter, mm                                | 310        |
| <b>REBCO tape area/quadrant, mm<sup>2</sup></b>        | 575        |
| Nb <sub>3</sub> Sn wire area/quadrant, mm <sup>2</sup> | 3221       |

Coil cross-section

- REBCO layers are made of individual turns.
- Space between the REBCO turns is used for SM.
- *TF* and field quality in aperture were optimized by varying the number and position of REBCO turns and Nb<sub>3</sub>Sn block parameters (number of turns, azimuthal angle and tilt).







U.S. DEPARTMENT OF

Office of Science

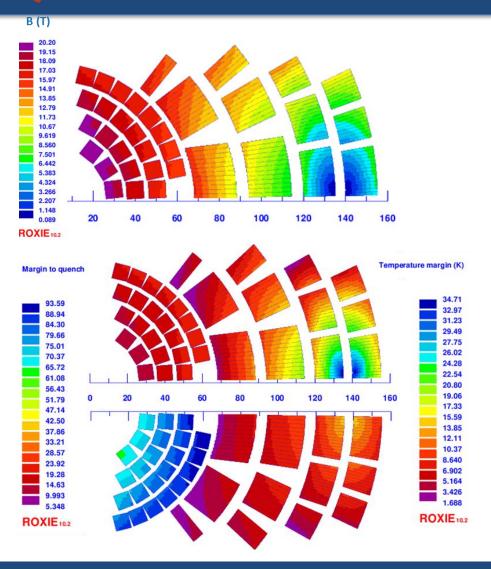
## Field harmonics and magnet main parameters

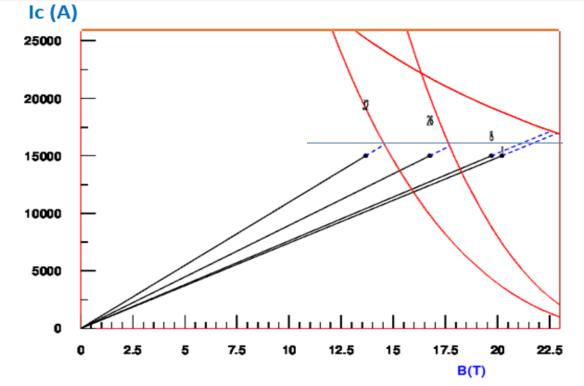


| Field harmonics at $R_{ref}$ =17 mm and B=20 T |      |        |      |       |
|------------------------------------------------|------|--------|------|-------|
| n                                              | 3    | 5      | 7    | 9     |
| b <sub>n.</sub> 10 <sup>-4</sup>               | 0.01 | -13.12 | 3.06 | -0.34 |



### Magnet parameters

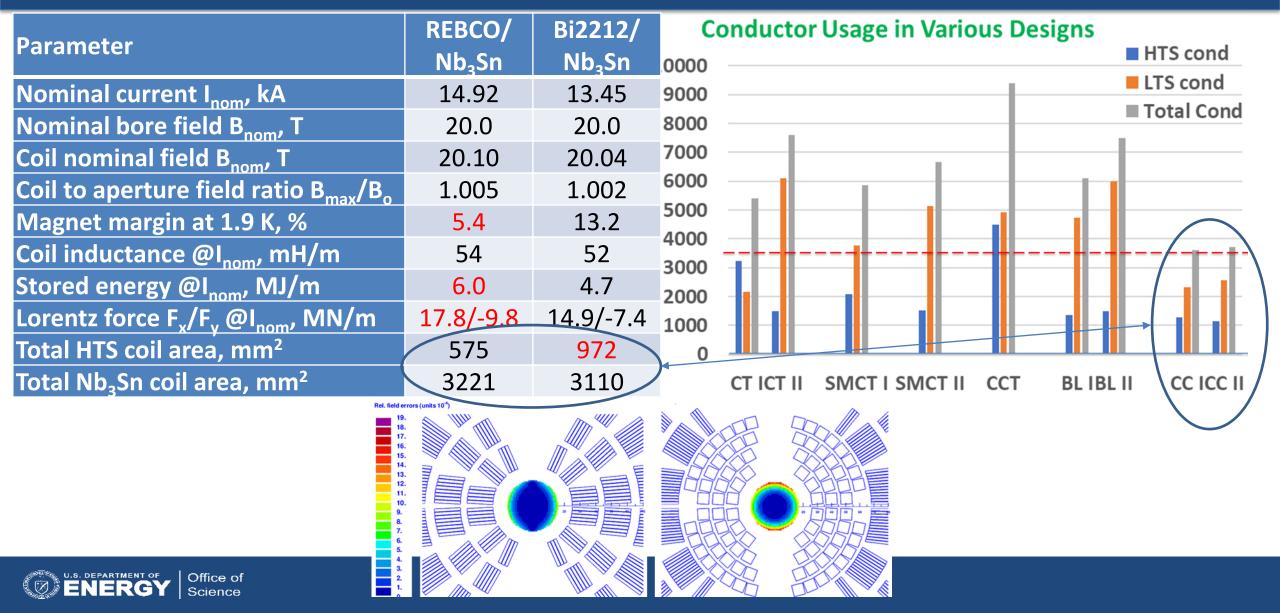

| Parameter                                                              | Value     |
|------------------------------------------------------------------------|-----------|
| Coil nominal current I <sub>nom</sub> , kA                             | 14.92     |
| Coil nominal field B <sub>nom</sub> , T                                | 20.0      |
| Coil to aperture field ratio B <sub>max</sub> /B <sub>o</sub>          | 1.005     |
| Coil inductance @I <sub>nom</sub> , mH/m                               | 54        |
| Stored energy @I <sub>nom</sub> , MJ/m                                 | 6.1       |
| Lorentz forces F <sub>x</sub> /F <sub>v</sub> @I <sub>nom</sub> , MN/m | 17.9/-9.9 |




DEPARTMENT OF

Office of Science

## **Magnet margins**






- B<sub>max</sub> is reached in block 3 for Cable 1, block 24 for Cable 2 and block 30 for Cable 3
- Margins to quench are 11.7% for REBCO Coils 1 and 2 (L1-2 and L3-4), 5.4% for Nb<sub>3</sub>Sn Coil 3 (L5-6), and 6.2% for Nb<sub>3</sub>Sn Coil 4 (L7-8)
- Magnet margins (T and I) are limited by the Nb<sub>3</sub>Sn coil



## Magnet parameter comparison





## Summary and next steps

- Complementary conceptual designs of a 20 T hybrid dipole based on HTS and Nb<sub>3</sub>Sn shell-type coils with realistic SC parameters and 150 mm cold iron yoke have been developed and analyzed.
- Bi2212/Nb<sub>3</sub>Sn dipole
  - 13.2% load line margin at 1.9 K
  - S<sub>Bi2212</sub> and S<sub>tot</sub> are noticeably smaller with respect to other US-MDP designs
- REBCO/Nb<sub>3</sub>Sn dipole
  - 5.4% load line margins at 1.9 K
    - magnet load line margin is lower than the design criteria
    - possibilities of increasing the total margin to the acceptable level needs to be studied
  - $S_{REBCO}$  and  $S_{tot}$  smaller then in Bi2212/Nb<sub>3</sub>Sn hybrid design
    - increasing the coil cross-section provides possibility to increase the magnet operation margin
- In both designs SM elements are integrated in the coil cross-section to keep the mechanical stresses in brittle HTS and Nb<sub>3</sub>Sn superconductors within the acceptable limits.
- Next steps:
  - mechanical and quench protection analysis for both designs
  - magnetic design optimization of REBCO/Nb<sub>3</sub>Sn dipole
  - HTS coil technology development *in progress*