

The origin of matter: breaking ground with THEIA

Collaborative effort: UC Berkeley (& LBNL), U Minnesota

BNL LDRD FY 24-25

- I. Critical analysis questions that affect CPV sensitivity
 - a. ND requirements
 - b. End-to-end oscillation analysis with parametric ND (DUNETDR level)
- 2. Critical design uncertainties
 - a. ND design
 - b. WbLS scale up

Low-energy reconstruction & sensitivity well explored in published papers

High-energy analysis is the critical step to bring the broader DUNE community on board

Scope

- I. High-energy event reconstruction
 - a. Determine effort needed for full adaptation of FiTQun for Cher+scint signals
 - b. Consider alternative models for detector performance
 - c. Implement
 - d. Evaluate impact
- 2. Oscillation analysis
 - a. Develop end-to-end oscillation analysis leveraging existing DUNE tools
 - b. Incorporate parametric FD model
 - c. Incorporate parametric ND model

Tasking

- 3. Evaluate ND requirements s.t. CPV sensitivity matches DUNE module
 - a. Cross section uncertainty (interaction rates on C, H, O; detector volume)
 - b. Energy resolution, target mass
 - c. Hadronic energy containment
- 4. ND design
 - a. ND design options to meet above requirements
 - b. Develop conceptual design, preliminary costs
- 5. Develop WbLS to meet FD requirements
 - a. Transparency (25-kton)
 - b. Light yield, time profile
 - c. In situ tuning

Deliverables / timeline

Timeline	Milestones	Deliverables
Year 1	Upgrade FitQun (Ch+S)	Report in impact of S on FD performance
	Coordinate with DUNE: shared analysis	
	End-to-end oscillation analysis	
	Evaluate ND reqs	Report on ND reqs
	Evaluate FD / WbLS reqs	
Year 2	Theia CPV sensitivity	Report on CPV sensitivity
	Down-select ND options	
	Conceptual ND design	Report on ND options
	WbLS performance assessment	

De	ivera	b	les

Institution	Personnel
BNL	David Asner
	Minfang Yeh
	Elizabeth Worcester
	Guang Yang (25%)
	Steven Linden (25%)
	Postdoc-a [TBD] (50%)
	John Tuozzolo (25%)
UMN	Mike Wilking
	Postdoc-b [TBD] (50%)
	Postdoc-c [TBD] (50%)
UCB	Gabriel Orebi Gann
Other	PI
	Postdoc-d [TBD] (50%)

Resources

Role

PI, oversight

Task 5 lead

Interface with DUNE

LBL analysis

LBL analysis

Task 5

ND design

Theia LBL lead

LBL analysis

ND design

Theia coordination, low-energy reqs

Additional LBL analysis engagement

LBL analysis