

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Update of the high-C_p project

-- Xingchen Xu, Pei Li, Sasha Zlobin

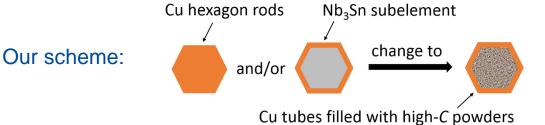
MDP collaboration meeting, 08/15/2018

Outline

Part I. Follow-up studies on the high- C_p wire fabricated by Hyper Tech

- NZPV measurements
- V-I and V-H stability tests

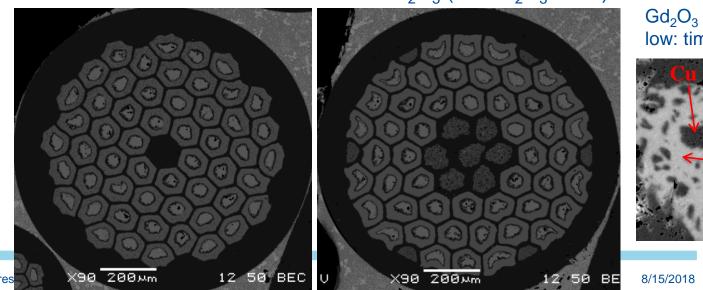
Part II. Current status of optimization and industrialization with Bruker


- Plan and current status
- The first two high-C_p rods
- C_p measurements

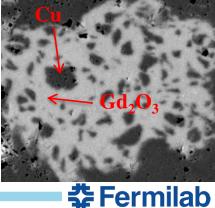
Goals and approaches

Goal: to reduce Nb_3Sn magnet training by improving energy margin of conductors. If energy margin > perturbation energy, quenches can be avoided.

Approach: improve specific heat of conductors by adding high- C_p materials in proper design.



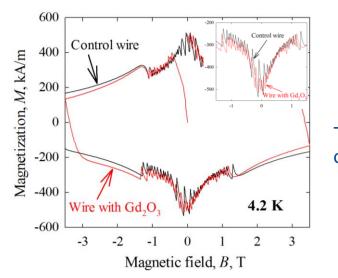
Another modification: blend Cu powder into high- C_p powder: (1) Enhance thermal conduction (2) Draw better

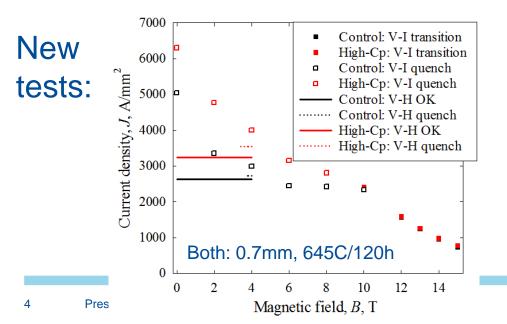

The control wire:

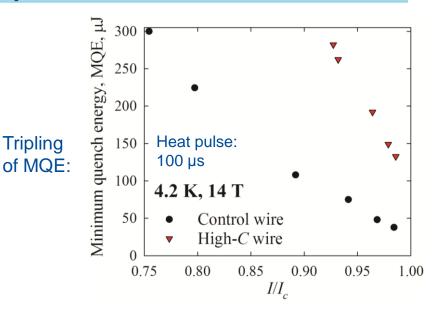
The wire with Gd_2O_3 (Cu/Gd₂O₃ = 0.5):

The first high- C_p wire made by Hyper Tech:

 Gd_2O_3 thermal diffusivity low: time constant is big.




Follow-up tests on high-C_p wire from HyperTech


Previous results:

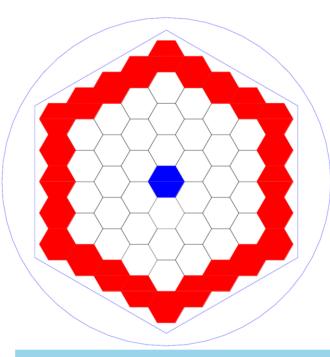
X. Xu, P. Li, A. Zlobin, X. Peng, *Supercond. Sci. Technol.* 31, 03LT02, 2018

- Slight decrease of flux jump amplitude.
- Need further confirmation, especially with better Cu/Gd₂O₃.

- Control wire starts to quench at 10 T.
- High- C_p wire starts to quench at 8 T.
- High- C_{p} wire has higher quench currents at low fields.
- Need further confirmation.
- The high-C_p filaments have large time constant, not good for intrinsic stabilization (short perturbations).
 Need better Cu/Gd₂O₃ mixture.

NZPV tests (set up and measured by Pei Li)

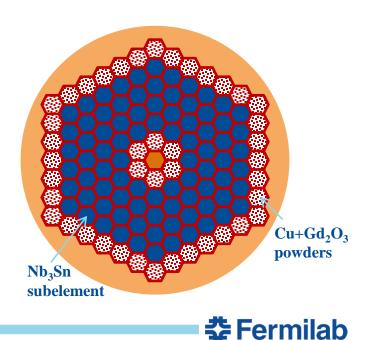
5 Presenter | Presentation Title


8/15/2018

🛟 Fermilab

Further optimization and industrialization

Plans for industrialization of high- C_p wires with Bruker:

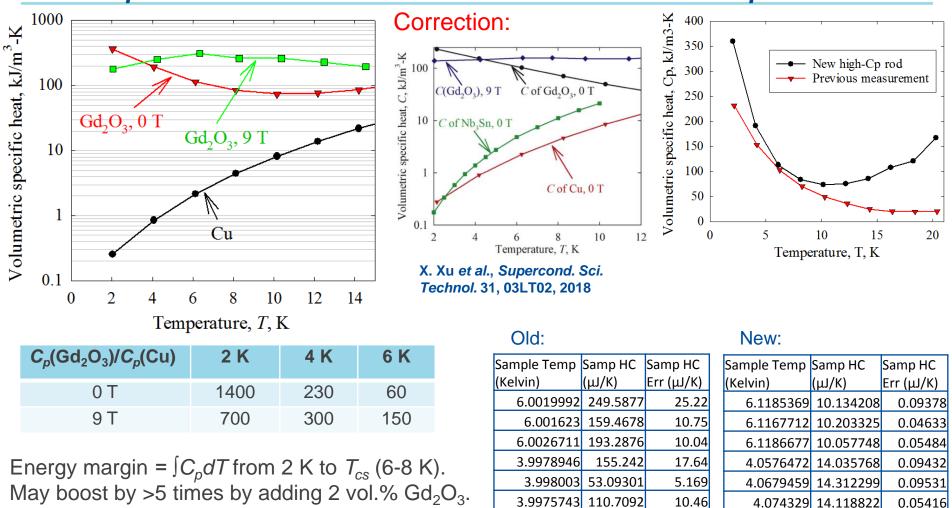

- First, optimization of high- C_p rods, including:
 - The ratio of Cu/Gd₂O₃ powders
 - The powder packing density
 - Mixing procedures
 - The size of Cu tube
- Second, shipping the optimized high- C_p rods to Bruker-OST and making RRP wires.

Original plan: 61-Re design: 24 high- C_p + 36 Nb₃Sn + 1 Cu.

In consideration: may change to 127-Re design: 42 high- C_p + 84 Nb₃Sn + 1 Cu.

Eventually, adjust Cu/non-Cu ratio to get high Nb₃Sn%.

New high-C_p rods made by Bruker-EAS


Current status: two high- C_p rods have been made, drawn to 4.6 mm and 0.74 mm. $Cu/Gd_2O_3 = 8:2$ X130 100 Mm X150 100m $Cu/Gd_2O_3 = 7:3$ X170 100Mm X130 100×m

These have been much better than the previous one. But need to further optimize.

8/15/2018

🛟 Fermilab

C_p measurements on the new high- C_p rods

2.0025718 82.60816

2.0024184 51.86808

2.002424 30.01866

It would be interesting to measure C_p at higher field, e.g., in 14 T or 16 T PPMS.

2.0333981 25.144407

2.0339328 25.135253

2.0339405 25.151921

🛠 Fermilab

0.02311

0.01162

0.01203

17.07

4.152

8.638

Presenter | Presentation Title

8

Summary

Measurements on the high- C_p wire made by Hyper Tech show:

- Some signs of reduced flux jump amplitude
- Tripling of MQE
- Some signs of improved V-I and V-H stability
- Reduction of NZPV by half or less

For this wire, time constant for the high- C_p filaments to absorb heat is too large, not good for intrinsic stabilization. Need better Gd_2O_3/Cu mixture.

Industrialization of high- C_p wires with Bruker starts with optimization of high- C_p rods. Two have been made. More will be tried to find optimal recipe.

