

Progress in Inter-layer Flexible Quench Antenna Developments

USMDP Bi-Weekly Meeting - 01/31/2023 . Teyber, D. Arbelaez, M. Marchevsky, E. Barzi, A. Plebani, E. Stabilini, R. Keijzer, G. Willering

Quench Antennas and Localization

- Previously: Inter-layer flexible quench antennas implemented in all CCT subscale magnets
 - Streamed through ramp to quench
 - Rules-based binning of quench location (coarse)

Quench Antennas

 Continuing inter-layer flexible quench antenna measurements on all magnets

Quench Antennas

 Student (Elisa Stabilini) over summer with Emanuela Barzi (FNL) to continue clustering analysis from A. Plebani of antenna ramp data

(a) Example from cluster 0 (b) Example from cluster 1 (c) Example from cluster 2

KMeans Clustering in 3D

Cluster (

Improved Quench Localization Method

- Define simplified metrics for data reduction
- Use cross-correlations between antenna segments to improve localization
 - Use computational tools to understand quench antenna array response for a given quench location
 - Define improved localization function base on cross-correlation metrics

Cable Quench Simulation

- Ruben Keijzer & Gerard Willering (Twente / CERN) performed simulations of quench in straight subscale cable with THEA
 - Similar work can be found here: DOI 10.1109/TASC.2023.3244140
 - Simulations use provided cable parameters and conductor critical current scaling
 - Simulations performed with quench starting on the edge of the cable as well as on the broad face
 - Each strand is segmented along the length and data is provided as current in each segment over time

Office of

5/10/2023

Parameter	Value
Number of strands	11
Cable width	4.0 mm
Cable thickness	1.1 mm
Strand diameter	0.6 mm
Twist pitch	27 mm
R _a	1 μΩ
R _c	20 μΩ
Temperature	4.5 K
Magnetic field	5 T
Simulated domain length	27 cm
Number of elements per strand	440

"Virtual" Quench Antenna Analysis

- Quench antenna response with Ruben's cable simulation "curved" into the CCT geometry
- Antenna elements created with discretized segments
- Vector potential at antenna segments calculated using Biot-Savart and integrated to determine antenna flux

Data Reduction Using Antenna Correlations

- Need simple metric to define quench anatenna response and correlation between various antenna elements
- Define Correlation parameter as $C_{ij} = \int_0^{t_0} |\varphi_i \varphi_j| dt$

Simulated Results (quench starts on cable edge)

Improved Quench Localization Method

- Use normalized correlation matrix to improve quench localization (normalize by largest value)
- Dominant diagonal component corresponds to 30° quench segment location (as was done with previous analysis)
- Improve localization by accounting for signals from neighboring antenna elements
 - Cross-Correlation between neighboring antennas
 - Self-Correlation of neighboring antennas

0° Simulation

5° Simulation

Improved Quench Localization Method (cont.)

- Find quench location segment by identifying maximum C_{ii}
- Within this segment compare the normalized values of the two neighboring self and cross-correlation values
 - Neighbor self-correlation difference: $\left(C_{i+1,i+1} C_{i-1,i-1} \right) / C_{i,i}$
 - Neighbor cross-correlation difference: $\binom{C_{i+1,i}-C_{i,i-1}}{C_{i,i-1}}$

Office of

5/10/2023

 $f(\theta) = -\frac{\tan(b\theta)}{\tan(b\pi/12)}$ Use fit function derived from simulations to determine angle for each case (should be consistent)

4,3 - 3,2

3.2 - 2.1

60

Fit

Sub 5 - Quench Heaters

- Installed quench heaters on CCT Sub5 inner layer
 - Heater are made of fine manganin wire

5/10/2023

- Heaters are attached with stycast to the edge of the cable (outside of the glass insulation)
- Two heater traces installed (4 heaters each)
 - Heaters aligned with antenna edges (90°, 60°, 30°, 0° (failed))
 - Heaters aligned (mostly) with antenna centers (90°, 75°, 45°, 15°)

11

Sub 5 - Quench Heater Localization Results

Improved localization method gives results consistent with the heater location

Quench Localization SUB2 and SUB3

CCT Subscale 2

CCT Subscale 3

- Dashed lines represent Vtap segment
- Color represents quench number

Quench Angle Localization Summary and Next Steps

- General trends for quench angle on thin and thick spar magnets have been established
- Simulations of debonding and training in CCT magnets are being performed by G. Vallone
- Will continue to use available information and tools to improve understanding of training mechanisms in these magnets
- Continue statistics / clustering analysis of ramp data with focus on wax magnet

