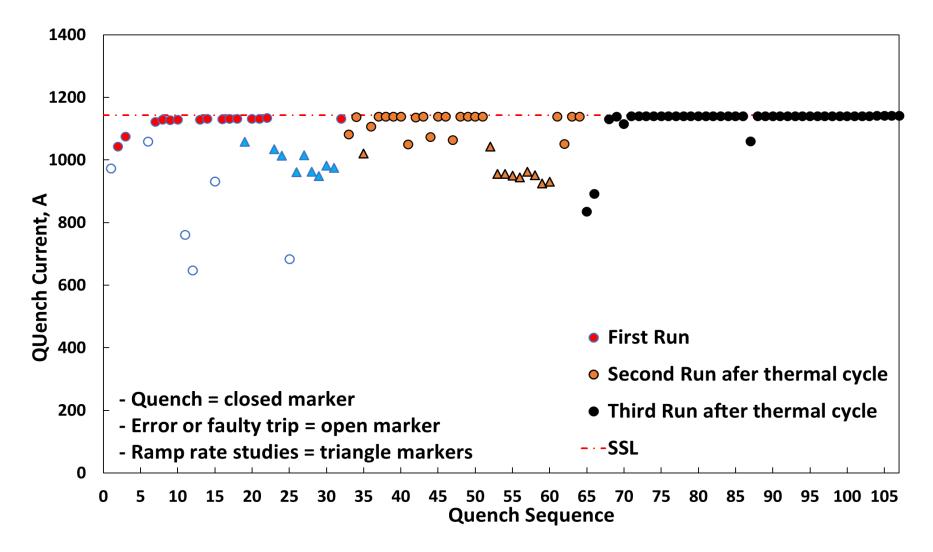
US-MDP General Meeting – January 31, 2024

Results on Nb₃Sn Undulator Impregnated with TELENE and High-C_D TELENE

Rimtec

Emanuela Barzi, U.S. Pl

Fermilab & Ohio State University

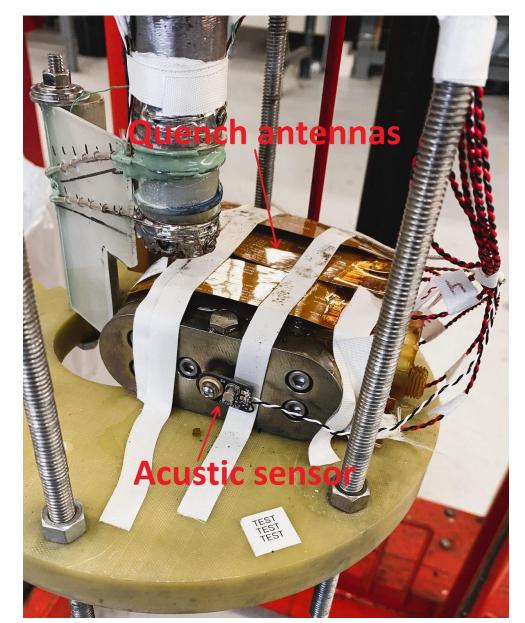

Akihiro Kikuchi, Japan PI

U.S.-Japan Science and Technology Cooperation Program in High Energy Physics

OUTLINE

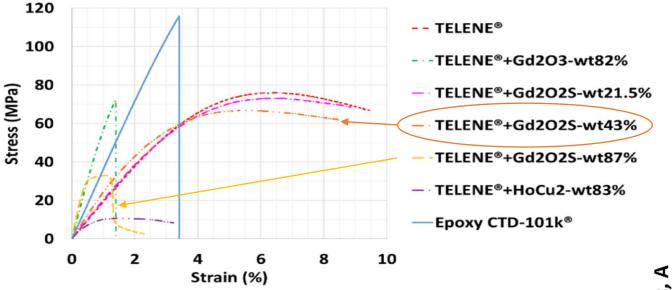
- Results obtained so far within the U.S.-Japan Science and Technology Cooperation Program in HEP for the following:
- 1. First Nb₃Sn undulator impregnated with pure TELENE, and practical implications for accelerators.
- 2. Second Nb₃Sn undulator impregnated with TELENE-43wt%Gd₂O₂S and tested with advanced instrumentation.
- Next Steps
- Analysis of QA data Joe Di Marco

1st Nb₃Sn Undulator Test Results Impregnated with pure TELENE

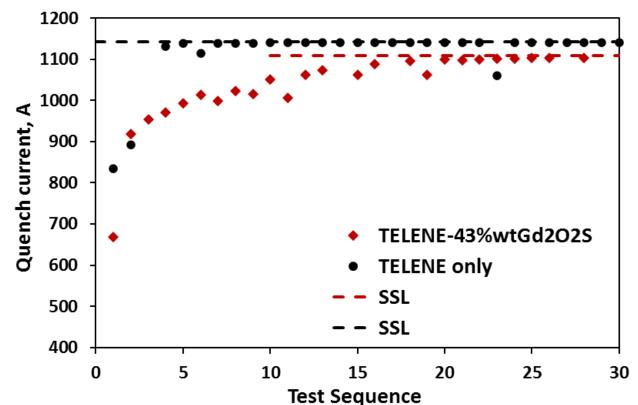

IPAC 2024 Abstract

Performance Improvement of LTS Undulators for Synchrotron Light Sources

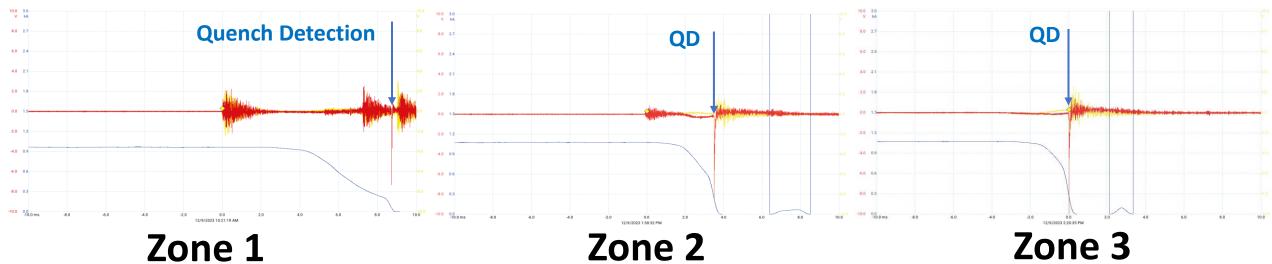
Authors: Akihiro Kikuchi, Ibrahim Kesgin, Daniele Turrioni, Alexander Zlobin, and Emanuela Barzi

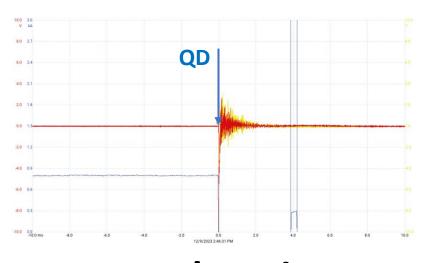

The expertise of ANL and FNAL has led to the production of Nb₃Sn undulator magnets for the ANL Advanced Photon Source (APS). These magnets showed performance reproducibility ~100% of the short sample limit, and a design field increase of 20% at 820A. However, the long training did not allow obtaining the expected 50% increase of the on-axis magnetic field with respect to the 1.1 T produced at 450 A current in the ANL NbTi undulator. To address this, 10-pole long prototypes were fabricated, and CTD-101K® was replaced as impregnation material with TELENE®, an organic olefin-based thermosetting dicyclopentadiene resin produced by RIMTEC Corporation, Japan. Training and magnet retraining after a thermal cycle were nearly eliminated, with only a couple of quenches needed before reaching short sample limit at over 1,100 A. **TELENE** will enable operation of Nb₃Sn undulators much closer to their short sample limit, expanding the energy range and brightness intensity of light sources. **TELENE** is Co-60 gamma radiation resistant up to 7-8 MGy, and therefore already applicable to impregnate planar, helical and universal devices operating in lower radiation environments than high energy colliders.

Instrumentation Added



- 2 acoustic sensors (provided by S. Krave) were added, i.e. bolted on the magnet end plates, one on each side.
- 5 quench antennae (QA) wrapped the coil.
- The NI Compact Rio (25 Khz sampling rate, circular buffer of 1000 samples) was used to acquire voltage taps, QAs, and current. <u>Data acquisition</u> <u>and quench detection</u> are triggered when the bucked voltage signal is above threshold.
- A 20 MHz, 8-channel picoscope was used for the acoustic signals. Their data acquisition is triggered when the voltage of one of the signals is above 0.3 V.
- For synchronization of the two DAQ systems, the current channel was a shared channel.


2nd Nb₃Sn Undulator Test Results Impregnated with TELENE-43wt%Gd₂O₂S


- A reason for the TELENE-43wt%Gd₂O₂S to be less effective than pure TELENE in eliminating training is its much lower thermal diffusivity $\mathbf{D} = k/(\rho C_p)$ than for pure TELENE, due to its larger C_p .
- <u>Thermal conductivity of these resins needs to</u> <u>be increased through materials engineering</u>.

Identified Acoustic Patterns

••• Current, A Ó **Test Number**

False trip

Next Steps

- TELENE was successful to prevent training in the Nb₃Sn ANL undulator, which
 produces a maximum magnetic field of about 5 T and maximum equivalent stress on
 the conductor of less than 100 MPa. The next necessary step is to check whether the
 developed resins can lead also to a reduction in training in stress managed magnets,
 which is the current core design in the US Magnet Development Program (US-MDP).
- High-C_p ceramic powders mixed in TELENE have proven to be exceptionally radiation resistant to Co-60 gamma irradiation. When combined with the ductility and toughness properties of TELENE, these resins have already shown superior training performance with respect to CTD-101K. <u>To fully exploit their characteristics, the last</u> <u>necessary step is that of increasing their thermal diffusivity D by adding high-thermal</u> <u>conductivity components in these resins</u>.
- A 2-year extension was proposed for this grant, with FNAL, ANL, LBNL and BNL on the US side.