MDP - Common-Coils 20 T PSI Contribution to the magnet design and analysis

Douglas Araujo (PSI)

Ramesh Gupta, Michael Anerella, Kathleen Amm, John Cozzolino, Mithlesh Kumar, Chris Runyan (BNL)

Paolo Ferracin (LBNL)

Vittorio Marinozzi (FNAL)

Emmanuele Ravaioli (CERN)

March 12, 2024

Cross-Section

- Intra-beam distance of 400 mm
- Yoke diameter of 1.2 m
- Shell (stainless) thickness is 30 mm

- 4 common-coils
- $1 \times HTS + 3 \times Nb_3Sn$
- 4 pole-coils (HTS)
- 50 mm clear bore
- Target Field is 20 T

Coil and Cable Parameters

Layer	Туре	N turns	
1	HTS	73	
2	Nb ₃ Sn	73	
3	Nb ₃ Sn	73	
4	Nb ₃ Sn	73	
58	HTS	4 x 3	

	Bi2212	Nb ₃ Sn
Height in mm	18.35	13.3
Width in mm	1.52	1.6
N strands	40	28
Strand Dia in mm	0.85	0.9
Cu/nCu	3	1

	Bi2212	Nb ₃ Sn 1	Nb ₃ Sn 2
Height in mm	18.35	19.0	17.1
Width in mm	1.52	1.6	1.6
N strands	40	40	36
Strand Dia in mm	0.85	0.9	0.9
Cu/nCu	3	1.8	2.5

Insulation thickness of 0.15 mm

Model 1

Model 2

Models 1 & 2: Coil

Models 1 & 2 Magnetic Analysis: B₀ 19.98

With self-field contribution

Magnetic Analysis: Field quality and Margin

ах	Units	ах	Units
2	+ 0.22	2	+ 0.24
4	- 0.03	4	- 0.02
6	- 0.27	6	- 0.28
8	+ 0.43	8	+ 0.44
bx	Units	bx	Units
3	+ 0.06	3	- 2.18
5	+ 0.14	5	+ 0.14
7			
/	- 1.47	7	- 1.49

Model 2

Bi2212 Margin < 15%

Model 1

8 6 1 2 3 2 3

Mech Analysis: some assumptions

- Shell, pads/collars, common-coils formers and pole coils forms made of 314 L
- Turns belonging to the same block are bonded together
- Pads/collars pieces are bonded
- Layers can slide and detach from each other and from the surrounding pads/collars
- Pole formers are attached to the pad/collar
- Pre-load is applied with three keys (contacts)
- Keys are 40 mm long
- Many DoFs to be optimized

key	Interference in mm
1	0.1
2	0.8
3	0.8

Mech Analysis Coils

8

• Model 2 higher stress due to the interlayer 1-2 overbend

Nominal field

l field

Mech Analysis Iron

Nominal field

Increasing inner yoke ٠ radius

Ω

Nominal field

Mech Analysis Formers and Pads

Nominal field

interlayer 1-2 overbend

TIME=3	-
SEQV (AVG)]\
PowerGraphics EFACET=1 AVRES=Mat DMX = .940E-03 SMN =68123 SMX = .144E+10 0 .889E+08 .178E+09 .267E+09 .356E+09 .444E+09 .533E+09 .622E+09 .711E+09 .800E+09	

l field

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SEQV (AVG) PowerGraphics EFACET=1 AVRES=Mat DMX =.940E-03 SMN =68123 SMX =.144E+10 68123 .160E+09 .321E+09 .481E+09 .642E+09 .802E+09 .963E+09 .112E+10 .128E+10 .144E+10

10

Mech Analysis Shell

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SY RSYS=1 (AVG) PowerGraphics EFACET=1 AVRES=Mat DMX =.001548 SMN =.159E+09 SMX =.215E+09 .159E+09 166E+09 .172E+09 .178E+09 .184E+09 .190E+09 .197E+09 .203E+09 .209E+09 .215E+09

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=3 STEF=3 SUB =1 TIME=3 SY (AVG) RSYS=1 PowerGraphics EFACET=1 AVRES=Mat DMX = .001554SMN =.157E+09 SMX =.214E+09 .157E+09 .163E+09 .169E+09 .176E+09 .182E+09 .188E+09 .195E+09 .201E+09 .207E+09 .214E+09

To be done

- Add strands on lay 1 to have 15% of margin
- Thicker intralayer 1-2
- Thicker rib between blocks on the bottom
- Match rib to pole coils former
- Re-optimize for field quality
- Check protection