Bayesian Uncertainty Quantification for Neutrinoless Double-Beta Decay

Ann-Kathrin Schuetz, Alan Poon

Lawrence Berkeley National Laboratory

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

interplay with cosmology / direct mass measurements

Mass constraints

$2\nu\beta\beta: (\mathbf{A}, \mathbf{Z}) \rightarrow (\mathbf{A}, \mathbf{Z} + 2) + 2\mathbf{e}^{-} + 2\overline{\nu}_{\mathbf{e}}$

- ∆L=0
- SM allowed
- observed in many isotopes
- T_{1/2} ~ (10¹⁸ 10²⁴) yr

n

Double-beta decay and lepton number violation

- processes

Most measured half-lives for $2\nu\beta\beta$ are O(10²¹) years

- Compare to lifetime of the universe: 10¹⁰ years
- Compare to Avogadro's number: 6 Å~ 10²³
- A mole of the isotope will produce ~1 decay/day
- If it exists, the half-lives of $0v\beta\beta$ would be much longer
- ⁷⁶Ge $0\nu\beta\beta$ limit is > 10²⁶ years, ¹³⁰Te $0\nu\beta\beta$ limit is > 10²⁴ years
- A mole of ⁷⁶Ge produces < 1 neutrinoless decay/year

How rare?

END experiment

EGEND, mission: "The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics

background (BI) < 1
$$T_{1/2}^{0
u}\proptoarepsilon\cdot$$

background (BI) > 1 $T_{1/2}^{0\nu} \propto \varepsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$

 \checkmark source = detector \Rightarrow high ϵ ✓ high purity Ge (HPGe) detectors \Rightarrow low intr. Bl $\checkmark \Delta E @ Q_{\beta\beta} \sim 0.2 \%$ \Rightarrow excellent ΔE

\rightarrow increase sensitivity by background reduction (BI) at Q_{\beta\beta\beta} and simultaneous increase of mass (M) and improvement of the energy resolution (ΔE)

Experimental sensitivity

✓ high density \Rightarrow 0v $\beta\beta$ peak-like events

- low $Q_{\beta\beta}$ value ($Q_{\beta\beta}$ = 2039 keV) ⇒ possible external BI (e.g. ²⁰⁸TI)
- a=7.8% for ⁷⁶Ge
 - \Rightarrow enrichment necessary

Building on past strengths

GERDA - Germanium Detector Array

 operation of bare Ge crystals immersed in LAr, LAr scintillation for active veto • LNGS (Italy) until Nov 2019 • ΔE : 2.6 keV (BEGe FWHM at $Q_{\beta\beta}$) • BI: 5.2 x 10⁻⁴ cts / (kg·keV·yr)

MJD - MAJORANA DEMONSTRATO

- operation of Ge crystals in vacuum cryostat, ultra-clean underground electro-formed copper
- SURF (South Dakota) until 2020
- ΔE : 2.53 keV (FWHM at $Q_{\beta\beta}$)
- BI: 4.7 x 10⁻³ cts / (kg·keV·yr)

Reuse of GERDA facilities at LNGS after upgrades on e.g. lock system, piping, LAr veto, calibration system, etc.

- detect LAr scintillation light
- fiber shroud: fibers were coated with tetraphenyl butadiene (TPB) for wavelength shifting from VUV to blue regime
- ~ 200 kg of detectors distributed over 12 strings
- reuse of detectors from GERDA and MJD + 140 kg of additional inverted-coaxial point-contact (ICPC) detectors
- ICPC detectors:
 - Active mass > 3 kg
 - Excellent PSD performance

First stage: LEGEND-200

Read-out: New in LEGEND-200

- Low-mass front end (LMFE) close to detector (MJD-style)
- differential signal output (reducing noise)
- new digitizer: Flashcam
- new custom made head electronics, HV filter boards, slow control

LAr veto: New in LEGEND-200

- independent trigger (veto ^{77(m)}Ge, neutrons)
- in-situ LAr purity monitoring (LLAMA)
- measuring light yield and triplet lifetime
- Scintillating/ transparent detector holders (PEN)
- LAr purification system (fill and continuous)
- cryostat refilled with new LAr Sep.2021

Performance parameters

		Construction, Detector Production & Installation *Techn	nically driven schedule
Timeline	Design & Reviews	First Data	ull Data Taking
	2023 2024 2025 2026	2027 2028 2029 2030 2031 2032 2033 2034 2035	2036
mββ	9.4-21.4 meV (99.7% C.L. discovery) 8.5-19.4 meV (90% C.L. sensitivity)	interactions	
$T_{1/2}^{0\nu}$	1.3·10 ²⁸ yr (90% C.L. discovery) 1.8·10 ²⁸ yr (90% C.L. sensitivity)	duced by n oduced by smic rays	water tank
Background goal	< 10 ⁻⁵ cts/(keV·kg·yr)	neutron moderator to suppress	
Total exposure	10 t∙yr		argon
Signal acceptance	0.69		atmospheric liqui
ΔE at $Q_{\beta\beta}$	2.5 keV FWHM		
Total masss	1000 kg	surrounded by	underground LA
Q _{ββ}	2039 keV	detector strings	re-entrant tube
0vββ isotope	⁷⁶ Ge		

Bayesian uncertainty quantification for $0\nu\beta\beta$ decay

- Incident ionizing radiation creates electron hole pairs ∝E
- e- and h created in the depletion region move to the respective electrodes \rightarrow detectable current

P-type Point Contact Detector

- Signal cable →Less background
- Small p-contact →Low capacitance
 - →Less noise
- Thick dead layer →Less alpha and beta events
- Lower bias voltage
- Bigger detectors
- Smaller surface to volume ratio
- Charge drift & signal formation by using Shockley-Ramo Theorem:

Experimental goal is to measure mono-energetic peak at Q_{bb}

$0\nu\beta\beta: (\mathbf{A}, \mathbf{Z}) \rightarrow (\mathbf{A}, \mathbf{Z} + 2) + 2\mathbf{e}^{-}$

0.9 -- 0νββ (B.R. = 10⁻⁴) 0.8 **HPGe** resolution 0.7 We are looking for this tiny peak 0.2 0.1 (Summed β Energy)/Q 0.2 8.0

measure sum energy spectrum of electrons

- $2\nu\beta\beta \rightarrow continuum$

But this signal is buried under other backgrounds...

Bayesian Inference and UQ for 0vββ decay

\rightarrow increase sensitivity by **background reduction (BI)** at Q_{ββ} and simultaneous increase of mass (M) and improvement of the energy resolution (ΔE)

Decomposition before analysis cuts

 Well described by expected contributions with current statistics

Background Decomposition

Signal-like events $(0\nu\beta\beta/2\nu\beta\beta)$ events) local energy deposit in single detector

coincident energy deposition in more than one detector

(2) Background events (γ events)

deposition in multiple locations (MSE) \rightarrow PSD (analysis of time profile of current signal)

Surface events (α/β events)

energy deposited on or close by the detector contacts → PSD (short (p+) or long (n+) current pulse)

(3) Background events (γ events) additional energy deposition in LAr \rightarrow LAr veto

Example GERDA/ L200 commissioning:

< 10 detector datasets (< 20 cts in all datasets) $Q_{\beta\beta}, \sigma_i, \mu_i^B, \mu_i^S$ \rightarrow < 50 nuisance parameters **LEGEND-1000**: 10x detector channels ~ 100 measurement campaigns ~ 150 detector datasets

 $Q_{\beta\beta}, \sigma_i, \mu_i^B, \mu_i^S$

 \rightarrow 10⁵⁻10⁶ nuisance parameters

where:

- N_k total number of events observed in the *i*th partition
- *E_i* individual event energies in the *i*th partition
- $\sigma_k = FWHM_i/(2\sqrt{2ln2})$: energy resolution in ROI
 - the average FWHM across partitions is 3.29 keV

	_	_	_
CI	T	n	n
21	2		a
.			<u> </u>
	-		

There are 2 different priors on the signal strength $S = \frac{1}{T_{1/2}^{0\nu}}$ (which ranges from 0 to 10^{-24} 1/yr):

• $p(S) \sim Uniform$

• equiprobable signal strengths

•
$$p(S) \sim \frac{1}{\sqrt{S}}$$

- equiprobable Majorana neutrino masses $m_{\beta\beta}$
- $S \propto m_{\beta\beta}^2$

Get limit at 90% C. I. from posterior distribution of S

Limitation: High dimensional parameter space:

- Metropolis-Hastings sampling with random walk \rightarrow expensive
- gradient-based sampling like Hamiltonian Monte Carlo \rightarrow slow for high dimensional correlations

How can we address MCMC sampling limitations?

Ideas:

- mostly non-gaussian with tails
- Variational Bayesian Monte Carlo with Noisy Likelihoods
- Hamiltonian Monte Carlo
- Langevin Monte Carlo with modifications
 - LMC (w/o MH adjusted)

 - LMC underdamped
- uncertainty?
- Sampling with support points [arXiv:1609.01811]

• GP surrogates for Bayesian inference [arXiv:1809.10784] \rightarrow physics posteriors densities

• Random coordinate descent LMC \rightarrow Is the gradient less expensive to calculate? • Deterministic LMC with Normalizing Flow [arXiv:2205.14240] (proposed by Uroš Seljak)

• NN which learns the conditional probability (posterior) [arXiv:2006.02369] \rightarrow potential large

Dimension reduction by embedded (sub-)structures/ correlations

So far, background rejection based on single pulse shape/ veto parameters prior to spectral fit

Goal: model which incorporates additional informations into the likelihood (e.j. PSD, veto signals,...) indicating the background probability of an event

Questions:

- How to integrate PSD simultaneously for all type of pulse shapes?
- How would the mathematical formulation of the fit look like?

Extended Bayesian Inference and UQ for 0vßß

Correlations are everywhere!

Pulse shape analysis: analysis of the time profile of individual pulses used to reject different backgrounds by a single parameter

Surface-β-background ⁴²K (⁴²Ar) on n+ contact

Background rejection in point contact HPGe

γ-background (multi-site)

- amplitude of current pulse is suppressed for a **multi-site** event compared to a singlesite event of the same event Energy
- comparing **A against E** effectively rejects multi-site backgrounds
- various powerful PSA event topology tools can be used to reject different backgrounds
- alternative machine learning algorithms are available

+ uncertainty estimation

Bottlenecks:

- Increase of sub-datasets
- and bkg

Need:

- large datasets

with focus on (Double) Beta decay

μ^ee ΔL $z \neq 0$ Bayesian parameter estimation and uncertainty quantification in Nuclear Science n with focus on (Double) Beta decay

Thank you for your attention! **Question?**

