
RAT-PAC Geometry and 
Chroma Update

James Shen
University of Pennsylvania

Theia LBL Meeting, 04/22/2024



Rat-pac setup

- Full build chain CI is now setup: ratpac-setup -> ratpac2 -> ratpacExperiment
- Dockers are available: 

https://hub.docker.com/repository/docker/ratpac/ratpac-two/general
- Singularity images can be built from docker easily
- Currently supported dependencies:

- Built by default:
- root
- Geant4

- Not built, but supported by ratpac-setup:
- Chroma (plan on providing dedicated tagged builds)
- Cry 
- Tensorflow (plan on providing dedicated tagged builds)
- torch 
- ratpac (dedicated tag exists)
- nlopt

https://hub.docker.com/repository/docker/ratpac/ratpac-two/general


Geant4 Geometry Structure
Geant4 geometries are defined as a hierarchy 
of “volumes”. The volume tree is traversed 
during simulation to compute particle 
intersections.

“Overlap”: Geant4 jargon for violations of this 
hierarchy.

- Sibling volumes that have a non-zero 
intersecting volume

- Child volumes protruding out of their 
parent. 

Overlaps won’t “break” a simulation, but will 
result in unexpected/undefined simulation 
results.



RAT-PAC2/TheiaSimulation Optimization

Geant4 Voxelizes volumes by their smallers neighbors.

Tips for improving CPU Performance of programs using Geant4 
(https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4PerformanceTips):

“Create a hierarchy of volumes, if possible, when dealing with thousands of volumes, rather 
than placing all volumes in one flat space. Especially if there are areas of a setup or detector 
which have very different typical volume size (eg millimeters near an interaction point, meters far 
away) there will be a benefit in navigating if the parts of the setup are separated into different 
volumes.”

- PMTs were previously directly placed in the inner detector volume. 
- Add a “fiducal volume” inside the inner detector that covers majority of the inner detector 

but not the PMTs.
- Speed up is 100x and above!

https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4PerformanceTips


RAT enforces zero overlap checks. In reality, the simulation errors due to overlaps 
are minimal (given that the overlaps are minimal).

However, the same is not true for chroma!

Chroma adopts a mesh-based geometry: material is assigned by triangles at 
volume surfaces, “volume” as a structure does not exist.

Meaning: Small amount of overlap may result in completely bogus simulation 
results!



Geant4 overlap checks

- Geant4 has the capability of performing overlap checks on its geometry using 
the macro: /geometry/test/ run

- Unfortunately, this is not supported by the custom geometry class 
GLG4TorusStack. 

- We need to implement GetPointOnSurface() – but this is not trivial due to how volume 
tolerance is handled in TorusStack.



Chroma automatic geometry generation

- Ratpac2/geant4 geometry
- GDML & Ratdb Json dump

- Copied geant4’s own gdml writer to ratpac2, allow small changed 
to conform to our specific needs (write torus stacks, dichroic 
surface info, etc…)

- GDML: all geometry definition, material properties (as seen by 
geant4)

- Ratdb is only used to extract PMTInfo at the moment
- Chroma RatGeoLoader

- Generate meshes for all geant4 volumes using gmsh
- Conform all meshes (merge shared surfaces) – requires G4 

geometry to be 100% free of overlaps!
- Keep track of and assign materials to the correct triangles
- Takes about 20 minutes to complete for EOS

- Chroma.detector object, pickled for ease of use during 
simulation

Eos in Chroma



Wavelength Distribution

- 2MeV electron, simulated at the AV 
Center

- 10% WbLS



Wavelength Distribution, global efficiency calibrated

- Multiply RAT Light yield by 1.07



Running simulation with Chroma

Introducing ChAR0N: Chroma And Rat 0mq Network

- CHAR0N + Chroma acts as a server, while rat act as a client.
- RAT requests a simulation to be completed, chroma responds with the simulated result.
- Run as a “simple worker”: Single chroma instance, can communicate with multiple rat clients
- Or as a cluster: A persistent router instance connects to all rat clients in the front end, and deploy 

jobs to chroma workers in the backend.

SimpleWorker

Cluster



Handshake procedure

- Ping-Pong handshake:
- Rat sends PING, server/router replies PONG

- Detector Info exchange
- Rat requests DETINFO, server responds with its PMT channel position/type mapping

- PHOTONDATA / SIM request
- Rat sends all photon vertices it has generated for a specific event (pos, dir, pol, t, wvl).
- Chroma responds with the PEs that it has propagated (ch_id, t, wvl)

- Rat writes the simulated PEs in a separate output file. Plan to incorporate it to 
the rat DSWriter and have it written in ntuples just like regular PEs.



Benchmark

- Consider rat “event source” time – no processors
- Eos:

- 2MeV electron, 10% WbLS
- RAT: 0.071s/evt
- Chroma: 0.041s/evt

- 100MeV electron, 10% WbLS, 1 rat process
- RAT: 3.8s/evt
- Chroma: 0.57s/evt (1 rat process)
- Chroma: Chroma: 0.21s/evt (3 rat process)

- 1 GeV muon, 10% WbLS
- RAT: 11.314 s/evt
- Chroma: 2.4 s/evt (1 rat thread)
- Chroma: 0.37s/evt(8 rat process)



Benchmark

Theia:

- Wbls 5pct, 1 GeV Muon
- Rat: 26s/evt
- Chroma: 2.0s/evt (1 rat process)
- Chroma: 0.4s/evt (6 rat process)



Recently identified broader interest in Chroma in other collaborations:

(nEXO, LEGEND, MicroBoone, etc)

*Chroma Developer/user Slack: 
https://join.slack.com/t/slack-fyz2512/shared_invite/zt-2ef8n7w9h-3_2kwi_xogrzPd
YeF8_Drw

https://join.slack.com/t/slack-fyz2512/shared_invite/zt-2ef8n7w9h-3_2kwi_xogrzPdYeF8_Drw
https://join.slack.com/t/slack-fyz2512/shared_invite/zt-2ef8n7w9h-3_2kwi_xogrzPdYeF8_Drw

