Separation of 3 upsilon States in ePIC

Saeahram Yoo, Minjung Kim, Spencer Klein, Daniel Cebra LBNL EIC Meeting May 14 2024

Introduction

- Our first goal: Invariant mass spectrum of Υ(1S), Υ(2S), and Υ(3S) in the electron channel by ePIC for the resolution study
- Exclusive Vector Mesons: $\circ \gamma(1S), \gamma(2S) \text{ and } \gamma(3S) \rightarrow e^+e^-$

• Current status:

- Initial study on Aug 2023 in eAu (18x275 GeV) collisions
- ^o Generating new sample with the current detector geometry
- This presentation includes a study with simulation samples in ep (10x110 GeV) collisions (Resolving an issue with AfterBurner in the eAu sample)

LBNL EIC Meeting

Sample Production

• Simulation Procedure

- 1. eStarlight: generate Upsilons with the HepMC3 output
- 2. afterburner under eic-shell: add beam effects
- 3. npsim under eic-shell: detector (Geant4) simulation
- 4. eicrecon under eic-shell: reconstruct events and tracks

Input Information of Sample

- ° eAu on Aug 2023:
 - MC Truth seeding
 - not added afterburner
 - 18x275 GeV
 - · <mark>γ(</mark>NS) to e⁺e⁻
 - $\cdot 0 < Q^2 < 0.01 \text{ GeV}^2$

^o ep on May 2024:

- MC Truth seeding
- · added beam effects
- · 10x100 GeV
- · Υ (NS) to e⁺e⁻
- \cdot 0< Q² < 0.01 GeV²

LBNL EIC Meeting

Fit Model: DSCB

• Fit to a Double Sided Crystal Ball (DSCB) function

Double Sided Crystal Ball (DSCB) function

$$DSCB(m;\mu,\sigma,\alpha_{L},n_{L},\alpha_{H},n_{H}) = \begin{cases} e^{-0.5t^{2}} & \text{if } -\alpha_{L} < \alpha_{H} \\ e^{-0.5\alpha_{L}^{2}} \left[\frac{\alpha_{L}}{n_{L}} \left(\frac{n_{L}}{\alpha_{L}} - \alpha_{L} - t\right)\right]^{-n_{L}} & \text{if } t < -\alpha_{L} \\ e^{-0.5\alpha_{H}^{2}} \left[\frac{\alpha_{H}}{n_{H}} \left(\frac{n_{H}}{\alpha_{H}} - \alpha_{H} + t\right)\right]^{-n_{H}} & \text{if } t > \alpha_{H} \end{cases}$$

where t = (m - μ)/ σ

UCDAVIS Saeahram Yoo 4/8

LBNL EIC Meeting

Separation of 3 upsilon states in ePIC

LBNL EIC Meeting

May 14 2024

Saeahram Yoo 5 / 8

Separation of 3 upsilon states in ePIC

LBNL EIC Meeting

Separation of 3 upsilon states in ePIC

LBNL EIC Meeting

May 14 2024

Saeahram Yoo 7/8

Summary & Outlook

Detector resolution study to separate γ(1S), γ(2S), γ(3S) peaks is in progress using simulation
 ○ eSTARlight (generate seeds) → AfterBurner (beam effects) → npsim (digitalization)
 → EICrecon (reconstruction)

• The resolution of the three peaks was obtained using DSCB fits in the region of 0 < Q² < 0.01 GeV² with the truth seeding

^o Aug 2023	^O May 2024
$\sigma_{1S} = 79.97 \pm 0.31 \text{MeV}$	σ ₁₅ = 66.47 ± 0.63 MeV
$\sigma_{2S} = 64.30 \pm 0.12 \text{ MeV}$	$\sigma_{25} = 70.16 \pm 0.40 \text{ MeV}$
$\sigma_{35} = 65.42 \pm 0.13 \text{ MeV}$	$\sigma_{3S} = 71.91 \pm 0.41 \text{ MeV}$

• Next steps:

- ^o Obtain sample in eAu collisions with beam spreads using AfterBurner
- Detector resolution study using realistic seeding and in different region of the detector (barrel vs end cap)

LBNL EIC Meeting

May 14 2024

Saeahram Yoo

8/8

Backup Slides

LBNL EIC Meeting

AfterBurner Issue with Ion Energy

• Seems that AfterBurner can't read ion energy properly?

↓ AfterBurner Instruction

Beam energy settings

- The input file events must have two beam particles (marked by status code 4)
- Beam particle energies should correspond to one of EIC beam energy setups:
 - ep [GeV]: 275x18, 275x10, 100x10, 100x5, 41x5
 - eAu [GeV]: 110x18, 110x10, 110x5, 41x5

Ran AfterBurner using the eAu, 10x110 input (not working)

jug xl> srmyoo@login38:/global/u2/s/srmyoo/EIC/estarlight_install\$ abconv slight_eAu_Upsilon_10x110.hepmc -o eAu_Upsilon_10x110 ab_output Afterburner is ENABLED 10x110 is not a valid energy combination!!

Valid (ep) Combinations are 18x275, 10x275, 10x100, 5x100, and 5x41 Valid (eA) Combinations are 18x110, 10x110, 5x110, and 5x41 terminate called after throwing an instance of 'std::invalid_argument' what(): Ion beams energy combination Aborted

\Rightarrow The issue can be bypassed by -p 2 option!

Default (-p 0) doesn't provide eAu energies (confirmed by Kolja)

LBNL EIC Meeting

May 14 2024

Saeahram Yoo 10

AfterBurner Issue with Ion Energy

• Running it with an option -p 2

- ↓ AfterBurner Instruction about the preset option
- Using -p/--preset flag one can select a profile:
 - 0: IP6 High Divergence (higher luminosity) default,
 - 1: IP6 High Acceptance
 - 2: IP6 eAu
 - · 3: IP8 High Divergence (higher luminosity) default,
 - 4: IP8 High Acceptance
 - 5: IP8 eAu

UCDAVIS Saeahram Yoo 11

LBNL EIC Meeting

Detector Simulation Issue with Ion Energy

- Another problem with the sample in eA collisions:
 - After adding beam effects using AfterBurner, the speed of the detector simulation is so slow.. (10 events ~ 1 hour and 10 mins)
 - \rightarrow splited the file into 1000 containing 100 events each
 - \rightarrow timeout in the reconstruction step