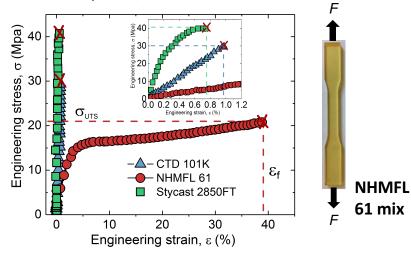
Epoxies for vacuum impregnation of superconducting magnets: A review and assessment of critical properties

Shijian Yin, Tengming Shen Lawrence Berkeley National Laboratory

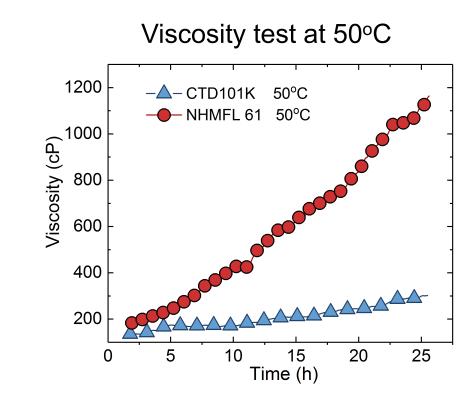
Oct 10, 2018

With technical helps and discussions from Diego Arbelaez, James Swanson, Hugh Higley and Jordan Taylor

What we discussed last time - CTD101K versus NHMFL 61


Thermal shock test After one thermal cycle (RT -> 77 K->RT)

2


Room Temperature, test standard - ASTM-D638

Properties	CTD-101k	NHMFL-mix61
Chemistry	liquid epoxy resin + anhydride hardener	bisphenol-A based liquid epoxy resin + amine hardener + high molecular weight additive
Elongation at break (%) [RT]	0.97	10.2
Glass transition temperature T _g (°C)	113	65
Radiation hardness	Ok at 30 MGy for high-lumi IR magnets	Unknown
Pros:	Low viscosity, Long pot life	High toughness High thermal shock resistance
Cons:	Brittle Low toughness	Higher viscosity Shorter pot life

What we discussed last time - CTD101K versus NHMFL 61

Viscosity test

Review of the resin systems used in major superconducting magnets

					i	1
Magnet system	Magnet type and applications	Resin	Recipe details	Notes on potting requirements	Notes on Resin	References
ITER Central Solenoid	Solenoids for Fusion	Ероху	GY282 + HY918 + DY073	Long pot life required	DGEBF resin + a low reacting anhydride MTHPA hardner	[1,2]
ITER TF coils	D-shaped Magnets for Fusion	Epoxy/Cyanate Ester	CTD425	Long pot life and radiation resistance required	Used with a primer, CTD- 450, to ensure adhension. Also used for the NSTX-U central stack.	[3]
ATLAS End Cap Toroid Magnet	Detector Magnets	Ероху	GY282 + HY5200 + DER732	Long pot life		[4]
NHMFL 900 MHz NMR solenoid	Solenoids	Ероху	NHMFL mix 61, confidential	High toughness	DGEBA resin + An aromatic amine + A high molecular weight additive	[5]
High-luminosity LHC Nb₃Sn QXF Quadrupole Magnets (LARP/AUP + CERN)	Accelerator magnets	Ероху	CTD101k	High radiation resistance (30 MGy)	DGEBA resin + an anhydrige hardner	[6]
University of Twente, MSUT Nb₃Sn dipole	Accelerator magnets	Ероху	MY740 + HY906 + DY062	Reasonable pot life and viscosity	DGEBA resin + an anhydride MTHPA hardner; similar to ITER CS epoxy and CTD101K	[7]
N/A	N/A	Ероху	Epoxy + Jeffamine amines curing agents	N/A	High toughness	[8,9]

[1] Reed, R., D. Evans, and P. Fabian, Development of a new resin system for the US ITER central solenoid model coil, in Advances in Cryogenic Engineering Materials. 2000, Springer. p. 227-234.

[2] Madhukar, Madhu S., and Nicolai N. Martovetsky. "DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts." Journal of Composite Materials 49.30 (2015): 3741-3753.

[3] Munshi, Naseem A., et al. "Radiation resistant electrical insulation qualified for ITER TF coils." IEEE transactions on applied superconductivity 23.3 (2013): 7700104-7700104.

[4] Reed, R.P., Low-Viscosity, Radiation-Resistant Resin System with Increased Toughness. 2004. 711: p. 209-216.

[5] Markiewicz, W.D., et al., 25 T high resolution NMR magnet program and technology. IEEE Transactions on Magnetics, 1996. 32(4): p. 2586-2589.

[6] Savary, F., et al. "The 11 T dipole for HL-LHC: Status and plan." IEEE Transactions on Applied Superconductivity 26.4 (2016): 1-5.

[7] Den Ouden, A., et al. "An experimental 11.5 T Nb/sub 3/Sn LHC type of dipole magnet." IEEE Transactions on magnetics 30.4 (1994): 2320-2323.

[8] Baldan, Carlos A., and Carlos Y. Shigue. "Development of a new epoxy resin for superconducting magnet impregnation." IEEE transactions on applied superconductivity 10.1 (2000): 1347-1349XELEY LAB

[9] Baldan, C. A., et al. "Study of bisphenol-F epoxy resin system for impregnation of superconducting magnets." Advances in Cryogenic Engineering Materials. Springer, Boston, MA, 2000. 205-210.

Review of the resin systems used in major superconducting magnets – there are actually only four systems.

Magnet system	Magnet type and applications	Resin	Recipe details	Notes on potting requirements	Notes on Resin	References
ITER Central Solenoid	Solenoids for Fusion	Ероху	GY282 + HY918 + DY073	Long pot life required	DGEBF resin + a low reacting anhydride MTHPA hardner	[1,2]
ITER TF coils	D-shaped Magnets for Fusion	Epoxy/Cyanate Ester	CTD425	Long pot life and radiation resistance required	Used with a primer, CTD- 450, to ensure adhension. Also used for the NSTX-U central stack.	[3]
ATLAS End Cap Toroid Magnet	Detector Magnets	Ероху	GY282 + HY5200 + DER732	Long pot life		[4]
NHMFL 900 MHz NMR solenoid	Solenoids	Ероху	NHMFL mix 61, confidential	High toughness	DGEBA resin + An aromatic amine + A high molecular weight additive	[5]
High-luminosity LHC Nb₃Sn QXF Quadrupole Magnets (LARP/AUP + CERN)	Accelerator magnets	Ероху	CTD101k	High radiation resistance (30 MGy)	DGEBA resin + an anhydrige hardner	[6]
University of Twente, MSUT Nb₃Sn dipole	Accelerator magnets	Ероху	MY740 + HY906 + DY062	Reasonable pot life and viscosity	DGEBA resin + an anhydride MTHPA hardner; similar to ITER CS epoxy and CTD101K	[7]
N/A	N/A	Ероху	Epoxy + Jeffamine amines curing agents	N/A	High toughness	[8,9]

[1] Reed, R., D. Evans, and P. Fabian, Development of a new resin system for the US ITER central solenoid model coil, in Advances in Cryogenic Engineering Materials. 2000, Springer, p. 227-234.

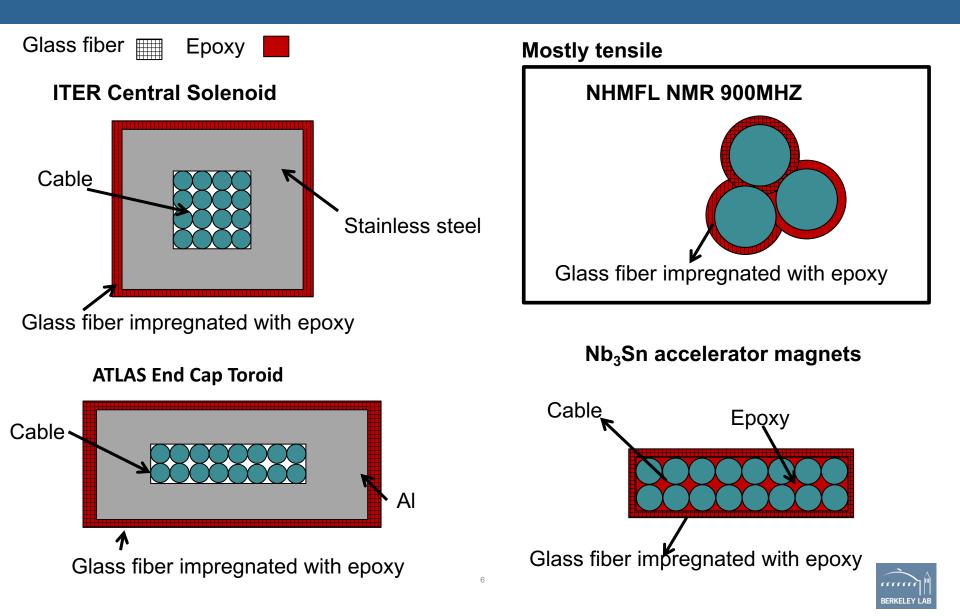
[2] Madhukar, Madhu S., and Nicolai N. Martovetsky. "DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts." Journal of Composite Materials 49.30 (2015): 3741-3753.

[3] Munshi, Naseem A., et al. "Radiation resistant electrical insulation qualified for ITER TF coils." IEEE transactions on applied superconductivity 23.3 (2013): 7700104-7700104.

[4] Reed, R.P., Low-Viscosity, Radiation-Resistant Resin System with Increased Toughness. 2004. 711: p. 209-216.

[5] Markiewicz, W.D., et al., 25 T high resolution NMR magnet program and technology. IEEE Transactions on Magnetics, 1996. 32(4): p. 2586-2589.

[6] Savary, F., et al. "The 11 T dipole for HL-LHC: Status and plan." IEEE Transactions on Applied Superconductivity 26.4 (2016): 1-5.


[7] Den Ouden, A., et al. "An experimental 11.5 T Nb/sub 3/Sn LHC type of dipole magnet." IEEE Transactions on magnetics 30.4 (1994): 2320-2323.

[8] Baldan, Carlos A., and Carlos Y. Shigue. "Development of a new epoxy resin for superconducting magnet impregnation." IEEE transactions on applied superconductivity 10.1 (2000): 1347-1349 KELEY LAB

[9] Baldan, C. A., et al. "Study of bisphenol-F epoxy resin system for impregnation of superconducting magnets." Advances in Cryogenic Engineering Materials. Springer, Boston, MA, 2000. 205-210.

A reminder – Interaction between epoxy and superconducting wires is not always the same

Sample list of tested epoxies – three systems covered.

Color coding the same with that on the slide 5.

Recipe No.	Ероху	Curing agent	Modifier	Cure
Rcp1	GY282	Jeffamine D230	N/A	80°C@2h
•				125°C@3h
Rcp2	GY282	Jeffamine D400	N/A	80°C@2h
				125ºC@3h
Rcp3	GY282	Jeffamine	N/A	80ºC@2h
Перз		D400/D2000		125ºC@3h
Rcp4 ATLAS ECT [1]	GY282	HY5200	DER 732 (10 pbw)	130ºC@15h
Rcp5 Modified ATLAS ECT [1]	GY282	HY5200	DER 732 (30 pbw)	130ºC@15h
Rcp6	GY282	Jeffamine D400/D2000	DER 732	80ºC@2h 125ºC@3h
Rcp7 ITER CS [2]	GY282	HY 918	DY 073	128ºC@12h

[1] Reed, R.P., Low-Viscosity, Radiation-Resistant Resin System with Increased Toughness. 2004. 711: p. 209-216.

[2] Reed, R., D. Evans, and P. Fabian, Development of a new resin system for the US ITER central solenoid model coil, in Advances in Cryogenic Engineering Materials. 2000, Springer. p. 227-234.

Initial Screening test_Thermal shock test

Room T to LN_2 to Room T

Size of the samples:

Diameter 70 mm Thickness 10 mm

Epoxy resin blocks

- contain an bronze screw
- without an bronze screw

14 samples were tested for 7 recipes.

Before the test

During the test

Thermal shock test

Rcp 4_ATLAS ECT

After one-time thermal cycle After 10-times thermal cycle After 20-times thermal cycle

Thermal shock test ATLAS ECT

Rcp 5_Modified

After one-time thermal cycle

After 10-times thermal cvcle

After 20-times thermal cycle

Thermal shock testRcp 7_ITER CS crackslike its sibling CTD101k

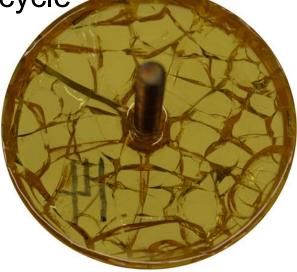
After one-time thermal cycle

After 20-times thermal cycle

After 10-times thermal cycle

Thermal shock test

Rcp 7_ITER CS


After one-time thermal cycle

After 10-times thermal cycle

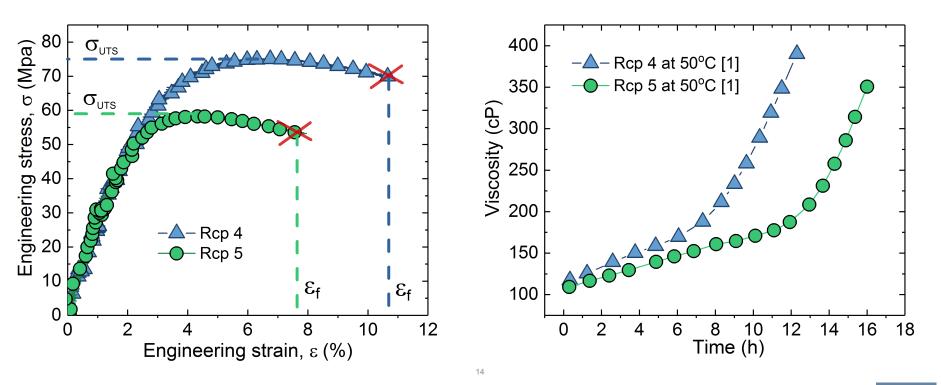
After 20-times thermal cycle

Initial Screening test_Thermal shock test

After 20-times thermal cycle

Samples with screw

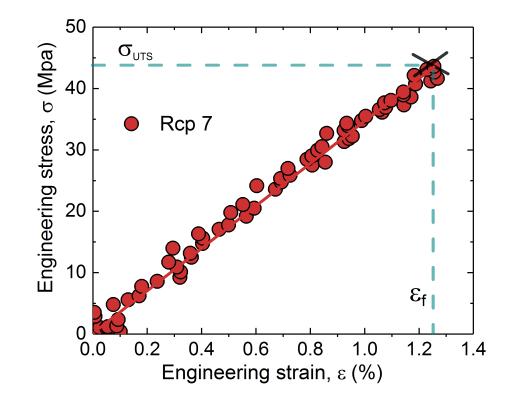
Recipe No.	Sample No.	Crack at first cycle	Cycles prior to failure
Rcp1	2	Ν	>20
Rcp2	4	Ν	>20
Rcp3	6	N	>20
Rcp4 ATLAS ECT [1]	8	Ν	10
Rcp5 ATLAS ECT [1]	10	Y	0
Rcp6	12	N	>20
Rcp7 ITER CS [2]	14	Y	0


[1] Reed, R.P., Low-Viscosity, Radiation-Resistant Resin System with Increased Toughness. 2004. 711: p. 209-216.

[2] Reed, R., D. Evans, and P. Fabian, Development of a new resin system for the US ITER central solenoid model coil, in Advances in Cryogenic Engineering Materials. 2000, Springer. p. 227-234.

Tensile test at RT – ATLAS ECT and its modified version show some ductivity.

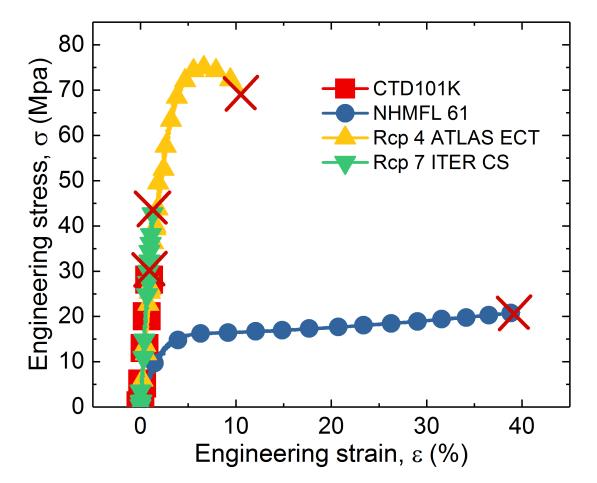
Recipe No.	Ероху	Curing agent	Weight	ratio (Epoxy : Curin	g agent : Modifier)
Rcp 4 ATLAS ECT [1]	GY282	HY5200	90	26 (HY5200)	10 (DER 732)
Rcp 5 ATLAS ECT [1]	GY282	HY5200	70	22 (HY5200)	30 (DER 732)


Higher stress and strain *Lower* viscosity and shorter pot life

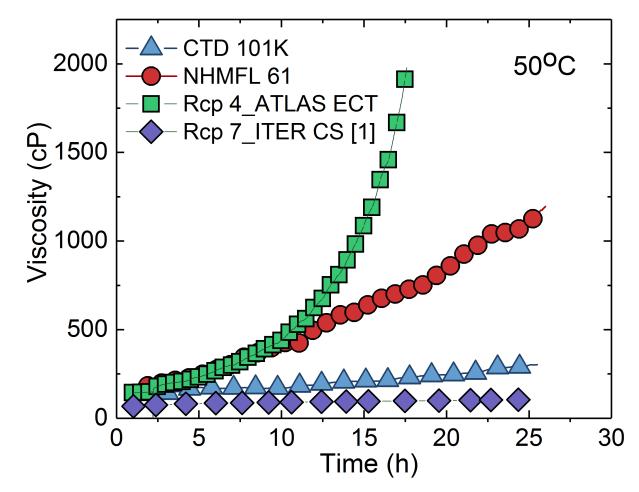
[1] Reed, R.P., Low-Viscosity, Radiation-Resistant Resin System with Increased Toughness. 2004. 711: p. 209-216.

Tensile test at RT – ITER CS epoxy, like its sibling CTD101k, is brittle

Sample No.	Ероху	Curing agent	Weight ra	tio (Epoxy : Curing	g agent : Modifier)
Rcp 7 ITER CS [1]	GY282	HY 918	100	82(HY 918)	0.25 (DY073)



Tensile test comparison


CTD101 K, NHMFL mix-61, Rcp4_ATALAS ECT epoxy, and Rcp7_ITER CS

Viscosity and pot life comparison

CTD101 K, NHMFL mix-61, ATALAS ECT epoxy, and ITER CS epoxy at 50C

[1] Madhukar, Madhu S., and Nicolai N. Martovetsky. "DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts." Journal of Composite Materials 49.30 (2015): 3741-3753.

Glass transition temperature comparison

Recipe No.	Ероху	Curing agent	Modifier	Tg (°C)
Rcp1	GY282	Jeffamine D230	N/A	44
Rcp2	GY282	Jeffamine D400	N/A	32
Rcp3	GY282	Jeffamine D400/D2000	N/A	N/A
Rcp4 ATLAS ECT [1]	GY282	HY5200	DER 732 (10 pbw)	123
Rcp5 ATLAS ECT [1]	GY282	HY5200	DER 732 (30 pbw)	68
Rcp6	GY282	Jeffamine D400/D2000	DER 732	N/A
Rcp7 ITER CS [2]	GY282	HY 918	DY 073	85
CTD 101K				105
NHMFL 61				65

Virtually all Nb₃Sn accelerator magnets have been potted with CTD-101k or its siblings.

Most of them have long quench training.

Test the NHMFL mix-61 and the Rcp 4_ATLAS ECT epoxy, two high toughness epoxy on both cosine-theta and CCT windings.

- Reasonable pot life and viscosity at 50C and reasonable curing temperatures.
- High thermal shock resistance
- High toughness and elongation at break
- For cosine-theta magnets, they might benefit from pressure VPI.

Still testing new recipes to add into our toolbox.

