Finite-size scaling analysis of proton cumulants

Agnieszka Sorensen w/ Paul Sorensen

arxiv:2405.10278

CPOD 2024

- Critical point (CP):
- The endpoint of a 1st order phase transition

Behavior near a critical point

As systems approach the CP, latent heat decreases \Rightarrow it costs little energy for components of one phase to form a local "bubble" of the other phase \Rightarrow as CP is approached, correlation length ξ increases = large fluctuations (large bubbles) \Rightarrow critical opalescence phenomenon:

 \rightarrow "bubbles" grow to sizes comparable with visible light wavelengths ($\xi \approx \lambda$) \rightarrow light can be scattered and a translucent system becomes cloudy (like fog) ⇒ at CP, correlation length formally diverges; system experiences correlations of all sizes (proof: critical opalescence in methanol+cyclohexane persists at CP where $\xi \sim 1$ cm)

a single point in the phase diagram where change from an ordered to disordered phase occurs

 $\xi_{\infty}(t,0) \sim |t|^{-\nu}$
 $\xi_{\infty}(0,m) \sim |m|^{-\nu_c}$

$\sim L^{\frac{\sigma}{\nu}} \;\;\Rightarrow\; X_L(t_L) = L^{\frac{\sigma}{\nu}} \phi(t,L) = L^{\frac{\sigma}{\nu}} \phi\left(t L^{\frac{1}{\nu}}\right) \;,$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

Universal behavior

Near CP:

 is bound by the size of the system L *ξ* It can be shown that

$$
X_{\infty}(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}} \Rightarrow X_L(t_L) \sim
$$

 $\xi_{\infty}(t,0) \sim |t|^{-\nu}$
 $\xi_{\infty}(0,m) \sim |m|^{-\nu_c}$

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

Universal behavior

Near CP:

 is bound by the size of the system L *ξ* It can be shown that

$$
X_{\infty}(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}} \Rightarrow X_L(t_L) \sim
$$

one can find CP by plotting

 $\sim L^{\frac{\sigma}{\nu}} \Rightarrow X_L(t_L) = L^{\frac{\sigma}{\nu}} \phi(t, L) = L^{\frac{\sigma}{\nu}} \phi\left(t L^{\frac{1}{\nu}}\right)$

 $X_L(t_L) = L^{\frac{\sigma}{\nu}} \phi \left(t L^{\frac{1}{\nu}} \right)$

Finite size vs. window size

Finite-size scaling (original): change the size of the system, calculate $X_L(t_L^{})$, repeat

Solution: study the dependence of *X* on the size of the *subsystem* that is considered

-
- Changing SIZE is not always possible or doesn't really probe the same system (bird flocks, heavy-ions)
	- - D. Martin, T. Ribeiro, S. Cannas, *et al.*, Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

$$
= L^{\frac{\sigma}{\nu}} \phi \left(t L^{\frac{1}{\nu}} \right)
$$

Finite size vs. window size

 $X_L(t_L) =$

Finite-size scaling (original): change the size of the system, calculate $X_L(t_L^{})$, repeat

*χ*2 *χ*1 = $C₂$ C_1

 \Rightarrow

Solution: study the dependence of *X* on the size of the *subsystem* that is considered

$$
\chi_{\infty}(t,0)\sim |t|^{-\gamma}
$$

Does it work??

-
- Changing SIZE is not always possible or doesn't really probe the same system (bird flocks, heavy-ions)
	- - D. Martin, T. Ribeiro, S. Cannas, *et al.*, Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

$$
\Rightarrow \quad \chi_2 = \frac{C_2}{C_1} \chi_1
$$

$$
\chi_1 = \frac{C_1}{VT^3} = \frac{n_B}{T^3}
$$

$$
\Rightarrow \quad \chi_2 = \frac{C_2}{C_1} \frac{n_B}{T^3}
$$

Motivation for VDF studies: cumulants in molecular dynamics

 cubic subvolumes 3 (good definition of probed L) $\begin{array}{c} 10 \text{ g} \\ 8 \text{ g} \\ 6 \text{ g} \end{array}$ 10 9 8 7 6 5 10 9 $\begin{smallmatrix} 8 & 7 & 6 \ 5 & 5 \end{smallmatrix}$ $\frac{10}{1234}$ $\frac{10}{456}$ $\frac{10}{789}$ $\frac{10}{9}$ $\frac{10}{10}$ 4 3 ₂ _{10 0} 1 ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ $^{6}5$ 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 $\begin{smallmatrix} 4 & 3 \\ 3 & 2 \end{smallmatrix}$ $\begin{smallmatrix} 4 & 3 \ 3 & 2 \end{smallmatrix}$ $\begin{smallmatrix} 4 & 3 \ 3 & 2 \end{smallmatrix}$ $\mathbf{1}_{0}$ l. x y z 2 at 0.0 fm/c, event 1, NT=200 c $200₁$ x y z 1 at 0.0 fm/c, event 1, NT=200 x y z 1 at 0.0 fm/c, event 1, NT=200 $\kappa_2/\kappa_1=1$ κ_2/κ_1 \sum_{125} ⁵ ⁶ ⁷ ⁸ ⁹ \star \vert ⁵ ⁶ ⁷ ⁸ ⁹ $+\infty$ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ $\frac{1}{100}$ 3 3 temperature Γ
 $\frac{1}{2}$ to $\frac{1}{2}$ $x = 200$ at 200.0 fm $x = 200$ x y z 1 at 200.0 fm/c, event 1, NT=200 \blacksquare \blacks 2.5 \mathbb{Z} 1.0 $\begin{array}{c} \n\hline\n\end{array}$ 0.5 ² ³ ⁴ ⁵ ⁶ ² ³ ⁴ ⁵ ⁶ -1 0 1 3 4 5 6 7 8 9 10 $\begin{array}{c} 0.5 \\ 0.1 \end{array}$ $\begin{array}{c} 10 \\ 3 \end{array}$ $\overline{2}$

baryon number density n_B [n_0]

AS and V. Koch, Phys. Rev. C **104**, 3, 034904 (2021) byent 1, NT=200 arXiv:2011.06635

Agnieszka Sorensen

Finite-size scaling analysis of cumulants in a periodic box

VDF potentials in SMASH hadronic transport

 cubic subvolumes 3 (good definition of probed L) $\begin{array}{c} 10 \text{ g} \\ 8 \text{ g} \\ 6 \text{ g} \end{array}$ 10 9 8 7 6 5 10 9 $\begin{smallmatrix} 8 & 7 & 6 \ 5 & 5 \end{smallmatrix}$ $\frac{10}{1234}$ $\frac{10}{456}$ $\frac{10}{789}$ $\frac{10}{9}$ $\frac{10}{10}$ 10 0 $^{-1}$ 2 3 4 5 6 7 8 9 10 $^{6}5$ 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 $\begin{smallmatrix} 4 & 3 \\ 3 & 2 \end{smallmatrix}$ $\begin{smallmatrix} 4 & 3 \ 3 & 2 \end{smallmatrix}$ $\begin{smallmatrix} 4 & 3 \ 3 & 2 \end{smallmatrix}$ $\mathbf{1}_{0}$ κ4/κ2 for T(N) = 18, n(N) l. **communication** $200₀$ x y z 1 at 0.0 fm/c, event 1, NT=200 x y z 1 at 0.0 fm/c, event 1, NT=200 x y z 2 at 0.0 fm/c, event 1, NT=200 $\kappa_2/\kappa_1=1$ κ_2/κ_1 \sum_{125} ⁵ ⁶ ⁷ ⁸ ⁹ \star \vert ⁵ ⁶ ⁷ ⁸ ⁹ $+\infty$ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ $\frac{1}{100}$ $\frac{8}{100}$ 3 $\frac{1}{2}$ 100
Experimental 75 $x = 200$ at 200.0 fm $x = 200$ x y z 1 at 200.0 fm/c, event 1, NT=200 \blacksquare \blacks 2.5 1.0 Č $\begin{array}{c} \n\hline\n\end{array}$ 0.5 ² ³ ⁴ ⁵ ⁶ ² ³ ⁴ ⁵ ⁶ -1 0 1 3 4 5 6 7 8 9 10 $\begin{array}{c} 0.5 \\ 0.1 \end{array}$ $\begin{array}{c} \circ \\ \circ \end{array}$ $\overline{2}$

baryon number density n_B [n₀]

AS and V. Koch, Phys. Rev. C **104**, 3, 034904 (2021) byent 1, NT=200 arXiv:2011.06635

Agnieszka Sorensen

Finite-size scaling analysis of cumulants in a periodic box

VDF potentials in SMASH hadronic transport

Finite-size scaling analysis of cumulants in a periodic box

small dependence on the microscopic scale

Finite-size scaling analysis of cumulants in a periodic box

 $L_{\text{box}} = 24 \text{ fm}$

Agnieszka Sorensen

Thermal model

$$
\chi_2(W, \mu_{\text{fo}}) = \frac{C_2(W, \mu_{B,\text{fo}})}{T_{\text{fo}}^3 W dV_{\text{fo}} / dy}
$$

where W is the rapidity bin width, i.e., the rapidity bin win-the rapidity win-the-rapidity win-the-rapidity win-

J. Adamczewski-Musch et al. (HADES), Phys. Rev. C 102, 024914 (2020), arXiv:2002.08701 [nucl-ex].

- and in particular in the second order susceptibility 2. • we used published thermal model lits for I • We used published thermal model fits for T_{fo} and $\mu_{B,\text{fo}}$
- $\overline{M}_{\overline{C}}$ from the parameters freeze-out parameters $\overline{M}_{\overline{C}}$ • We parameterize *a* V_{f_0} /*ay* from several pub.
At lower energies, HRT and some fits give *s* $t_{\rm H}$ for the temperature $\sigma_{\rm H}$ and $\sigma_{\rm H}$ density solution. For 2.4 GeV, T_c^3 V is highly uncertain, ranging from 0.5 to 5 unit rapidity *dV*fo*/dy*. The susceptibility in our analysis • We parameterize dV_{fo}/dy from several publications. At lower energies, HBT and some fits give a muer smaller dV_{fo}/dy . We use the larger volume, lower density solution. For 2.4 GeV, $T_{f_0}^3 V$ is highly
	- 2^{10} Specific W₁₀ dV_{fo}/dy , T_{fo} and $\mu_{B,\text{fo}}$ from thermal model fits for $\frac{dV_{\text{fo}}}{dx}$ Experiments can improve results by publishing specific *W*

A. Andronic, P. Braun-Munzinger and J. Stachel, Acta Phys. Polon. **B** 40, 1005-1012 (2009), [arXiv:0901.2909 [nucl-th].

 \mathcal{L} , there are at least $(1, 1, 2)$, there are at least four other at leas S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, and N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015).

M. Abdallah et al. (STAR), Phys. Rev. C 104, 024902 (2021), arXiv:2101.12413 [nucl-ex].

m. Abdallah et al. (STAR), Phys. Rev. C 104, 024902 (2021), arXiv.2101.12413 [nucl-ex].
M. Abdallah et al. (STAR), Phys. Rev. C 107, 024908 (2023), arXiv:2209.11940 [nucl-ex].

A. Motornenko, J. Steinheimer, V. Vovchenko, R. Stock, and H. Stoecker, Phys. Lett. B 822, 136703 (2021), arXiv:2104.06036 [hep-ph].

- Grey band shows uncertainty from freezeout ambiguities for the 2.4 GeV data. Uncertainty precludes any conclusion about $\rm observing$ a maximum in χ_2
- Data do indicate a change in slope at higher μ_B and at small *W*: decreases with increasing *W* for 7.7-54.4 GeV *χ*2 but changes slope at 2.4 GeV $(3.0 \text{ GeV is } \sim \text{flat})$

Susceptibility

$$
\chi_2(W, \mu_{\text{fo}}) = \frac{C_2(W, \mu_{B,\text{fo}})}{T_{\text{fo}}^3 W dV_{\text{fo}}/dy}
$$

Scaled susceptibility

11

- Good scaling for negative *m*
- Low energy points do not scale well
- Scaling function Φ is well described by a power law; consistent with $expectation for m \rightarrow -\infty.$
- This scaling neglects variation of $t = (T - T_c)/T_c$; not a bad approximation for 7.7 GeV and above, but worse for 2.4 and 3.0 GeV.

$$
\chi_2(W, m) = W^{\gamma/\nu} \Phi(mW^{1/\nu})
$$

$$
m = (\mu_B - \mu_{B,c})/\mu_{B,c}
$$

Scaled susceptibility: excluding widest bins

12

- Our simulations showed that baryon number conservation may spoil the scaling for larger values of *W*
- Excluding W=0.8 and 1.0 reduces the $\mu_{B,c}$ (as was expected from simulations)
- The fraction of measured baryons to total baryons is likely well below 25% for all these points except the 2.4 and 3.0 GeV data (not in the fit)

Scaled susceptibility: μ_B/T fit

- To explore factoring in the temperature dependence used $(r - r_c)/r_c$ where $r = \mu/T$
- From that, we extract $T_c = 140 \pm 13$ MeV

Summary

- Simulations show that window-size analysis works: effects due to finite time, baryon number conservation can be controlled by considering less than \sim 25% of the total volume
- We observe finite-size scaling for χ_2 extracted from 7.7-54.4 GeV data: we obtain $\mu_B \approx 625 \pm 60$ MeV and $T_c = 140 \pm 13$ MeV
- We explored a variety of fit ansaetze: μ_B , μ_B/T , (μ_B,T) , different critical exponents…

Thank you

Binder cumulants

15

Expectation: $U_4 = o$ (Gaussian), $2/3$ (bimodal), crosses at the critical point

$$
U_4 \approx c_1 + c_2(\mu - \mu_c)W^{1/\nu}
$$

- At low μ_b , U_4 follows Skellam with $U_4(W=0.8)$ > $U_4(0.6)$ > $U_4(0.4)$
- At μ_b >400, the ordering appears to reverse
- Data are consistent with a critical point between μ_b of 400 and 800 MeV

$$
U_4 = - C_4/(3C_2^2)
$$

K. Binder, Z. Phys. B 43, 119 (1981).

Different critical exponents

16

• We explored a broad range of critical exponents including mean-field (1.0, 0.5)

- For each selected critical exponent pair, we find the temperature that minimizes the Chi-square.
- Chi-square is shown in color and Tc as text.
- Most results are satisfactory Chisquare values so we do not interpret the Chi-square valley as necessarily providing the correct exponents

ν

 $\boldsymbol{\mathsf{V}}$