Efficiency and Purity of ePIC Track Reconstruction

Mito Funatsu

Mentor: Beatrice Liang-Gilman

Outline:

- Defining efficiency/purity 1.
- Efficiency/purity of truth-seeded tracks 2.
- Efficiency/purity of real-seeded tracks 3.

160

140

120

100

60

40

20

0

-4

-3

-2

-1

0

η

count 80

Next steps 4.

- Crater Lake geometry
- Single muon
- 10,000 events
- 0.5<p<20 GeV/c
 - -4≤ŋ≤4

Definitions: Efficiency and Purity

Efficiency	Purity
Efficiency is the ratio:	Purity is the ratio:
# of reconstructed tracks	# of "good" tracks
# of MCParticles	# of reconstructed tracks
	A reconstructed track is " good " if it can be matched with an MCParticle within:
	 ΔΘ (theta) : 0.005 rad ΔΦ (phi) : 0.03 rad
	* dpp: 5%, DCA: 3mm

Summary:

Purity measurement is conducive to assessing the reliability of efficiency plots. These plots will give us a baseline for when we add noise.

Next Steps:

- 1. Update purity conditions to include: dpp: 5%, DCA: 3mm
- 2. Look at the efficiency and purity values with **noise**
- 3. Analyze DIS events