Deuterons at LHC: "snowballs in hell" via hydrodynamics and hadronic afterburner

Dmytro (Dima) Oliinychenko November 20, 2018

in collaboration with: Volker Koch LongGang Pang Hannah (Petersen) Elfner

Deuteron in heavy ion collisions

- Bound state of proton and neutron, binding energy 2.2 MeV
- Deuteron yield in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV:

 $N_d = rac{gV}{2\pi^2} Tm^2 K_2(m/T), \ T = 155 \ {
m MeV}$

Snowballs in hell.

Deuteron: rapid chemical freeze-out at 155 MeV, like hadrons?

Methodology: hybrid approach

Particlization T = 155 MeV

- CLVisc hydro L. G. Pang, H. Petersen and X. N. Wang, arXiv:1802.04449 [nucl-th]
- SMASH hadronic afterburner J. Weil et al., PRC 94, no. 5, 054905 (2016)
- Treat deuteron as a single particle
 - implement deuteron + X cross-sections explicitly

Most important deuteron production/disintegration reactions

 $\begin{array}{l} \mbox{Largest } d \,+\, X \mbox{ disintegration rate } \rightarrow \mbox{ largest reverse production rate} \\ \mbox{Most important} = \mbox{ largest } \sigma^{\rm inel}_{d+X} \textit{n}_X \end{array}$

$$\begin{array}{cccc} X & \sigma_{d+X}^{\rm inel} \; [{\rm mb}] \; (\sqrt{s} - \sqrt{s_{thr}} = [0.05, 0.25] \; {\rm GeV}) & \frac{dN^{\star}}{dy}|_{y=0} \\ \pi^{\pm} & 80 - 160 & 732 \\ K^{+} & < 40 & 109 \\ K^{-} & < 80 & 109 \\ p & 50 - 100 & 33 \\ \bar{p} & 80 - 200 & 33 \\ \gamma & < 0.1 & {\rm comparable to } \pi? \end{array}$$

 $\pi + d$ are the most important because of pion abundance

Reactions with deuteron implemented in SMASH

- $\pi d \leftrightarrow \pi np$, $\pi d \leftrightarrow np$, elastic $\pi d \leftrightarrow \pi d$
- $Nd \leftrightarrow Nnp$, elastic $Nd \leftrightarrow Nd$
- $\bar{N}d \leftrightarrow \bar{N}np$, elastic $\bar{N}d \leftrightarrow \bar{N}d$
- CPT conjugates of all above reactions for anti-deuteron
- \bullet all are tested to obey detailed balance within 1% precision

 $\pi d \leftrightarrow \pi np$ is the most important at high (LHC) energies $Nd \leftrightarrow Nnp$ is the most important at low (AGS) energies

Reactions of deuteron with pions

 $\pi d \leftrightarrow \pi np$ is the most important at LHC energies $\sigma_{\pi d}^{inel} > \sigma_{\pi d}^{el}$, not like for hadrons

Reactions of deuteron with (anti-)nucleons

 $Nd \leftrightarrow Nnp, \ \bar{N}d \leftrightarrow \bar{N}np$: large cross-sections but not important at LHC energies, because N and \bar{N} are sparse

Reactions of deuteron with (anti-)nucleons

 $Nd \leftrightarrow Nnp, \ \bar{N}d \leftrightarrow \bar{N}np$: large cross-sections but not important at LHC energies, because N and \bar{N} are sparse

6

Transverse momentum spectra

Pion and kaon spectra not affected by afterburner Proton spectra: pion wind effect and $B\bar{B}$ annihilations ($\sim 10\%$)

Obtaining $B_2(p_T)$ coalescence parameter $B_{2}(p_{T}) = \frac{\frac{1}{2\pi} \frac{d^{2}N_{d}}{p_{T}dp_{T}dy}|_{p_{T}^{d} = 2p_{T}^{p}}}{\left(\frac{1}{2} \frac{d^{2}N_{p}}{d^{2}N_{p}}\right)^{2}}$ 10 hydro + afterburner ALICE, PbPb, 0-10% 8 $B_2 [GeV^2/c^3] (x \ 10^4)$ 0 0.5 2 2.5 0 1.5 1 p_T/A [GeV]

Reproducing B_2 without any free parameters

$B_2(p_T)$ for different centralities

Works well for all centralities

p_T -spectra for different centralities

p_T -spectra for different centralities

Does deuteron freeze out at 155 MeV?

Only less than 1% of final deuterons original from hydrodynamics

Is $\pi d \leftrightarrow \pi np$ reaction equilibrated

After about 12-15 fm/c within 5% $\pi d \leftrightarrow \pi np$ is equilibrated

The yield is almost constant. Why? Does afterburner really play any role?

No deuterons at particlization: also possible. Here **all** deuterons are from afterburner.

No deuterons at particlization: also possible. Here **all** deuterons are from afterburner.

Without $B\bar{B}$ annihilations yield coincidence is less impressive

But it persists if T of particlization is changed to 165 MeV

Toy model of deuteron production: no annihilations

- only π , N, Δ , and d
- isoentropic expansion
- pion number conservation
- baryon (not net!) number conservation

$$(s_{\pi}(T, \mu_{\pi}) + s_{N}(T, \mu_{B}) + +s_{\Delta}(T, \mu_{B} + \mu_{\pi}) + s_{d}(T, 2\mu_{B}))V = const$$
$$(\rho_{\Delta}(T, \mu_{B} + \mu_{\pi}) + \rho_{\pi}(T, \mu_{\pi}))V = const$$
$$(\rho_{N}(T, \mu_{B}) + \rho_{\Delta}(T, \mu_{B} + \mu_{\pi}) + 2\rho_{d}(T, 2\mu_{B}))V = const$$

No annihilation: deuteron yield grows, like in simulation.

 $T_{\rm particlization} = 165$ MeV. Relative yields are similar, like in simulation.

Annihilation out of equilibrium: $\mu_B = \mu_B \frac{V/V_0}{a+V/V_0}$, a = 0.1 $T_{\text{particlization}} = 155 \text{ MeV}.$

Annihilation out of equilibrium: $\mu_B = \mu_B \frac{V/V_0}{a+V/V_0}$, a = 0.1 $T_{\text{particlization}} = 165$ MeV. Qualitatively similar to our simulation. 15

Summary

- $\pi d \leftrightarrow \pi pn$: most important deuteron producing / disintegrating reaction at LHC
- deuteron does not freeze-out at 155 MeV
- chemical and kinetic freeze-outs of deuteron roughly coincide
- deuteron yield stays constant after particlization, as thermal model assumes
 - reason: interplay of $\pi d \leftrightarrow \pi pn \ (d \uparrow)$ close to equilibrium and $B\overline{B}$ annihilations out of equilibrium $(d \downarrow)$

Outlook

- Deuteron: lower energies / smaller systems
- Relation to proton density fluctuations and critical point

Light nuclei production is related to nucleon density fluctuations in coordinate space

Dingwei Zhang, poster at Quark Matter 2018

Can one reproduce this with pure cascade?

SMASH transport approach

- $\mathbf{S} \text{imulating}$
- Multiple
- Accelerated
- $\mathbf{S} trongly-interacting$
- Hadrons

SMASH transport approach J. Weil et al., Phys.Rev. C94 (2016) no.5, 054905

• Monte-Carlo solver of relativistic Boltzmann equations

BUU type approach, testparticles ansatz: $N
ightarrow N \cdot N_{test}$, $\sigma
ightarrow \sigma/N_{test}$

- Degrees of freedom
 - most of established hadrons from PDG up to mass 3 GeV
 - strings: do not propagate, only form and decay to hadrons
- Propagate from action to action (timesteps only for potentials) action \equiv collision, decay, wall crossing
- Geometrical collision criterion: $d_{ij} \leq \sqrt{\sigma/\pi}$
- Interactions: $2 \leftrightarrow 2$ and $2 \rightarrow 1$ collisions, decays, potentials, string formation (soft SMASH, hard Pythia 8) and fragmentation via Pythia 8

SMASH: initialization

- "collider" elementary or AA reactions, $E_{beam}\gtrsim 0.5~A~{
 m GeV}$
- "box" infinite matter simulations

detailed balance tests, computing transport coefficients, thermodynamics of hadron gas Rose et al., PRC 97 (2018) no.5, 055204

• "sphere" - expanding system

comparison to analytical solution of Boltzmann equation, Tindall et al., Phys.Lett. B770 (2017) 532-538

• "list" - hadronic afterburner after hydrodynamics

SMASH: degrees of freedom

Ν	Δ	۸	Σ	Ξ	Ω	Unflavored				Strange
$\begin{array}{c} N_{938} \\ N_{1440} \\ N_{1520} \\ N_{1535} \\ N_{1650} \\ N_{1675} \\ N_{1680} \\ N_{1700} \\ N_{1710} \\ N_{1720} \\ N_{1875} \\ N_{1900} \\ N_{1990} \\ N \end{array}$	$\begin{array}{c} \Delta_{1232} \\ \Delta_{1620} \\ \Delta_{1700} \\ \Delta_{1905} \\ \Delta_{1910} \\ \Delta_{1920} \\ \Delta_{1930} \\ \Delta_{1950} \end{array}$	Λ ₁₁₁₆ Λ ₁₄₀₅ Λ ₁₅₂₀ Λ ₁₆₀₀ Λ ₁₆₇₀ Λ ₁₆₇₀	$\begin{array}{c} \Sigma_{1189} \\ \Sigma_{1385} \\ \Sigma_{1660} \\ \Sigma_{1670} \\ \Sigma_{1750} \\ \Sigma_{1775} \\ \Sigma_{1915} \\ \Sigma_{1940} \\ \Sigma_{2030} \\ \Sigma_{2250} \end{array}$		Ω^{-}_{1672} Ω^{-}_{2250}	$\begin{array}{cccc} \pi_{138} & f_{0980} \\ \pi_{1300} & f_{01370} \\ \pi_{1800} & f_{01370} \\ \eta_{548} \\ \eta'_{958} & a_{0980} \\ \eta_{1295} & a_{01450} \\ \eta_{1405} \\ \eta_{1475} & \varphi_{1019} \\ \phi_{1680} \\ \sigma_{800} \\ \rho_{776} \end{array}$	$ \begin{array}{c} f_{0980} \\ f_{01370} \\ f_{01500} \\ f_{01710} \\ a_{0980} \\ a_{01450} \\ \phi_{1019} \\ \phi_{1680} \\ h_{11170} \\ \end{array} $	$ \begin{array}{c} f_{2\;1275} \\ f_{2\;1525} \\ f_{2\;1525} \\ f_{2\;2000} \\ f_{2\;2000} \\ f_{2\;2040} \\ f_{1\;1285} \\ f_{1\;1420} \\ a_{2\;1320} \\ \pi_{1\;1400} \\ \end{array} $	$\begin{array}{c} \pi_{2\ 1670} \\ \rho_{3\ 1690} \\ \phi_{3\ 1850} \\ a_{4\ 2040} \\ f_{4\ 2050} \end{array}$	$\begin{array}{c} K_{494} \\ K^*_{892} \\ K_{11270} \\ K_{11400} \\ K^*_{1410} \\ K^{\circ}_{1430} \\ K_{2}^*_{1430} \\ K_{2}^*_{1430} \\ K_{2}^*_{1630} \\ K_{2,1770} \\ K_{3}^*_{1780} \\ K_{2,1820} \\ K_{4}^*_{2045} \end{array}$
N ₂₁₉₀ N ₂₂₂₀ N ₂₂₅₀		Isospin symmetry Perturbative treatment of non-hadronic particles (photons, dileptons)				$ \omega_{783} \omega_{1420} \omega_{1650} $	a _{1 1260}	η_{21645} ω_{31670}		

Hadrons and decay modes configurable via human-readable files

- Resonance formation and decay Ex. $\pi\pi \rightarrow \rho \rightarrow \pi\pi$, quasi-inlastic scattering $\pi\pi \rightarrow f_2 \rightarrow \rho\rho \rightarrow \pi\pi\pi\pi$
- (In)elastic $2 \rightarrow 2$ scattering

parametrized cross-sections $\sigma(\sqrt{s}, t)$ or isospin-dependent matrix elements $|M|^2(\sqrt{s}, I)$

• String formation/fragmentation

 $2 \rightarrow n \text{ processes}$

• Potentials

only change equations of motion

 Resonance formation and decay
 Ex. ππ → ρ → ππ, quasi-inlastic scattering
 ππ → f₂ → ρρ → ππππ
 (In)elastic 2 → 2 scattering
 parametrized cross-sections σ(√s, t) or
 isospin-dependent matrix elements |M|²(√s, l)
 String formation/fragmentation

 $2 \rightarrow n \text{ processes}$

• Potentials

only change equations of motion

For every resonance:

- Breit-Wigner spectral function $\mathcal{A}(m) = \frac{2N}{\pi} \frac{m^2 \Gamma(m)}{(m^2 M_0^2)^2 + m^2 \Gamma(m)^2}$
- Mass dependent partial widths $\Gamma_i(m)$

Manley formalism for off-shell width Manley and Saleski, Phys. Rev. D 45, 4002 (1992) Total width $\Gamma(m) = \sum_i \Gamma_i(m)$

• Potentials

only change equations of motion

For every resonance:

- Breit-Wigner spectral function $\mathcal{A}(m) = \frac{2N}{\pi} \frac{m^2 \Gamma(m)}{(m^2 M_{\pi}^2)^2 + m^2 \Gamma(m)^2}$
- Mass dependent partial widths $\Gamma_i(m)$

Manley formalism for off-shell width Manley and Saleski, Phys. Rev. D 45, 4002 (1992) Total width $\Gamma(m) = \sum_i \Gamma_i(m)$

+ $2 \rightarrow 1$ cross-sections from detailed balance relations

- Resonance formation and decay Ex. $\pi\pi \rightarrow \rho \rightarrow \pi\pi$, quasi-inlastic scattering $\pi\pi \rightarrow f_2 \rightarrow \rho\rho \rightarrow \pi\pi\pi\pi$
- (In)elastic $2 \rightarrow 2$ scattering

parametrized cross-sections $\sigma(\sqrt{s},\,t)$ or isospin-dependent matrix elements $|M|^2(\sqrt{s},\,l)$

• String formation/fragmentation

 $2 \rightarrow n \text{ processes}$

• Potentials

only change equations of motion

• $NN \rightarrow NN^*$, $NN \rightarrow N\Delta^*$, $NN \rightarrow \Delta\Delta$, $NN \rightarrow \Delta N^*$, $NN \rightarrow \Delta\Delta^*$

angular dependencies of $NN \rightarrow XX$ cross-sections implemented

• Strangeness exchange $KN \to K\Delta$, $KN \to \Lambda\pi$, $KN \to \Sigma\pi$

• Resonance formation and decay Ex. $\pi\pi \rightarrow \rho \rightarrow \pi\pi$, quasi-inlastic scattering $\pi\pi \rightarrow f_2 \rightarrow \rho\rho \rightarrow \pi\pi\pi\pi$

• (In)elastic $2 \rightarrow 2$ scattering

parametrized cross-sections $\sigma(\sqrt{s}, t)$ or isospin-dependent matrix elements $|M|^2(\sqrt{s}, I)$

• String formation/fragmentation

 $2 \rightarrow n \text{ processes}$

• Potentials

only change equations of motion

- String (soft or hard) fragmentation: always via Pythia 8
- Hard scattering and string formation: Pythia
- Soft string formation: SMASH
 - single/double diffractive
 - $B\bar{B}$ annihilation
 - non-diffractive

10 string model parameters currently under tuning

- Resonance formation and decay Ex. $\pi\pi \rightarrow \rho \rightarrow \pi\pi$, quasi-inlastic scattering $\pi\pi \rightarrow f_2 \rightarrow \rho\rho \rightarrow \pi\pi\pi\pi$
- (In)elastic $2 \rightarrow 2$ scattering

parametrized cross-sections $\sigma(\sqrt{s}, t)$ or isospin-dependent matrix elements $|M|^2(\sqrt{s}, I)$

• String formation/fragmentation

 $2 \rightarrow n \text{ processes}$

• Potentials

only change equations of motion

- Skyrme and symmetry potential
- $U = a(\rho/\rho_0) + b(\rho/\rho_0)^{\tau} \pm 2S_{\text{pot}} \frac{\rho_{I3}}{\rho_0}$

 ρ - Eckart rest frame baryon density ρ_{I3} - Eckart rest frame density of I_3/I $a=-209.2~{\rm MeV},~b=156.4~{\rm MeV},~\tau=1.35,~S_{\rm pot}=18~{\rm MeV}$ corresponds to incompressibility $K=240~{\rm MeV}$ assures stability of a nucleus with Fermi motion

