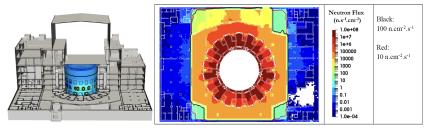
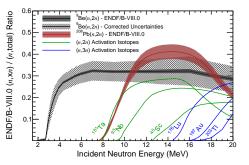


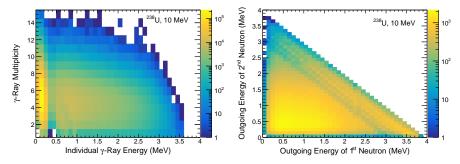
A New (n,xn) Measurement Capability at LANSCE Funded by DOE SC Early Career Research Program


Keegan J. Kelly

2025 Workshop for Applied Nuclear Data Activities



Fusion Reactors Rely on (n,2n) and (n,3n) **Rxns**


ITER_D_3FM52L - Radiation environment for equipment during operations by R Juarez

- *n* breeding essential for *t* production via ⁶Li(*n*,*t*), to drive *d*-*t*
 - ${}^{9}\text{Be}(n,2n)$ and ${}^{208}\text{Pb}(n,2n)$
- Activation-based flux measurements motivate a suite of (n,2n) measurements

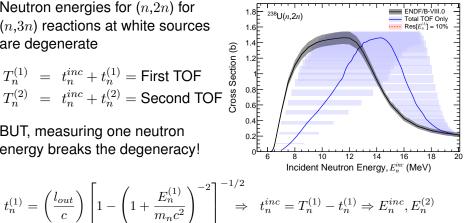
<u>Traditionally: γ -rays, Activation, or n Counting</u>

Calculated with CoH3 - T. Kawano, Springer Proceedings in Physics 254 (2021) 27

 \rightarrow Traditional methods do not measure emitted n information

 \rightarrow Detection of both (*n*,2*n*) neutrons captures 100% of strength.

Continuous white-source neutron measurements are ideal, but neutron TOF degeneracies are problematic



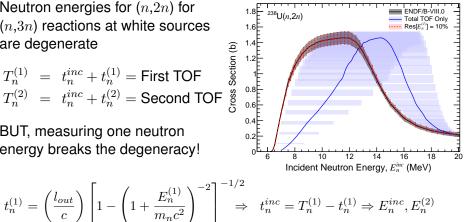
Degeneracies of White Sources can be Solved

Neutron energies for (n,2n) for (n,3n) reactions at white sources are degenerate

$$\begin{array}{rcl} T_n^{(1)} &=& t_n^{inc} + t_n^{(1)} = \mbox{First TOF} \\ T_n^{(2)} &=& t_n^{inc} + t_n^{(2)} = \mbox{Second TOF} \end{array}$$

BUT, measuring one neutron energy breaks the degeneracy!

LANSCE can provide continuous (n,2n) and (n,3n) measurements with emitted neutron energy and angular information



Degeneracies of White Sources can be Solved

Neutron energies for (n,2n) for (n,3n) reactions at white sources are degenerate

$$\begin{array}{rcl} T_n^{(1)} &=& t_n^{inc} + t_n^{(1)} = \mbox{First TOF} \\ T_n^{(2)} &=& t_n^{inc} + t_n^{(2)} = \mbox{Second TOF} \end{array}$$

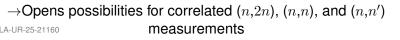
BUT, measuring one neutron energy breaks the degeneracy!

LANSCE can provide continuous (n,2n) and (n,3n) measurements with emitted neutron energy and angular information

Accomplished with CLYC-7 E_n Data and CoGNAC

- Upgrade CoGNAC to include a series of high-volume CLYC-7 scintillators
- 35 Cl(n,p) measures $E_n^{(1)}$ directly
- EJ-309 and CLYC-6 detectors provide $T_n^{(2)}$ measurement to low energy

<u>Applicable to 20+ (n,2n) and (n,3n) measurements for DOE SC NP FES, and could lead to a decade+ campaign for OES / SAT and PAT</u>


 \rightarrow Opens possibilities for correlated (*n*,2*n*), (*n*,*n*), and (*n*,*n'*) measurements

Accomplished with CLYC-7 E_n Data and CoGNAC

- Upgrade CoGNAC to include a series of high-volume CLYC-7 scintillators
- ${}^{35}\text{Cl}(n,p)$ measures $E_n^{(1)}$ directly
- EJ-309 and CLYC-6 detectors provide $T_n^{(2)}$ measurement to low energy

Applicable to 20+(n,2n) and (n,3n) measurements for DOE SC NP FES, and could lead to a decade+ campaign for OES / SAT and PAT

Project Tasks in Progress So Far

Tasks	F	FY2025			FY2026			FY2027				FY2028			FY2029				
Purchase CLYC-7 Detectors	F	_	_	_						-	-	ľ							
Integrate CLYC-7 Detectors into CoGNAC					_						-		•						
Leverage Existing Data for n-n Coincidence Development	-										-								
Utilize New Data for n - n Coincidence Development											1	♠							
Obtain Pure ¹⁸¹ Ta Target	-	♠																	
Obtain Pure ²⁰⁸ Pb Target					_														
Conduct ¹⁸¹ Ta(n,2n) Scoping Measurement						>													
Analyze ¹⁸¹ Ta(n,2n) Scoping Measurement Data											1								
Report Results from ¹⁸¹ Ta(n,2n) Scoping Measurement							-												
Conduct Simultaneous ¹⁸¹ Ta and ²⁰⁸ Pb(n,2n) Measurement								-			1								
Analyze ¹⁸¹ Ta and ²⁰⁸ Pb(n,2n) Data									_										
Report Results from ²⁰⁸ Pb(n,2n) Analysis											-			Y					
Conduct Simultaneous ¹⁸¹ Ta and ⁹ Be(n,2n) Measurement													♠						
Analyze ¹⁸¹ Ta and ⁹ Be(n,2n) Data											1					▲			
Report Results from ⁹ Be(n,2n) Analysis											1					_		•	
Conduct Exploratory ¹⁸¹ Ta and ²³⁸ U(n,2n) Measurement	1															_	♦		
Analyze ¹⁸¹ Ta and ²³⁸ U(n,2n) Data	1																	_	
Establish Funding for (n,xn) Measurements Building from this Work	1										1			_		_			

- CLYC-7 purchases placed; ¹⁸¹Ta & ²⁰⁸Pb target purchase in progress
- ⁹Be CoGNAC data being investigated for (n,2n)
- *n-n* coincidence development in progress with existing data
- Experiment on ¹⁸¹Ta(n,2n) planned for 2025 LANSCE run cycle
- Engineering of CLYC-7 integration in CoGNAC in progress

THANK YOU!

Direct questions to kkelly@lanl.gov

