

Benchmarking and Validating Cosmogenic Activation Models

Aaron Hellinger

Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

- Allow rare event search experiments to carefully plan for primary and secondary cosmic activation
- We will:
 - Optimize witness materials for different exposures (sea level, altitude, and time)
 - Measure cross-sections of possible witness materials if nuclear data gaps exist
 - Create open-source simulation that estimates production rate and activity of isotopes in Earth's atmosphere
 - Benchmark the code
 - Irradiations at LANSCE
 - Low and high-altitude stationary exposures
 - Transcontinental flights
 - > Counting to be done at Stanford Underground Research Facility (SURF) and at Pacific Northwest National Laboratory (PNNL) Shallow Underground Lab (SUL)

ACTIVATE: How does it work?

Identifying Witness Material Candidates

Use existing isotope databases to collect full set of possible isotopes for witness materials Downloaded all relevant isotope data and saved in dataframe for subsequent work ~ 1600 isotopes ~ 190,000 decay schemes

Identifying Witness Materials

(n,2n) reactions typically have highest production rates Proton-induced reactions having lower rates due to the lower flux at sea-level

Candidate Witness Materials

Besides production rates and half-lives, one also needs to consider:

toxicity chemical reactivity price

Candidate witness materials:
Nickel
Cobalt
Niobium
Titanium
Chromium

Preliminary benchmarking test

- Short exposure of natural nickel and cobalt
- Origin of materials unknown. Not exposed to saturation
- Counted on HPGe detectors in SUL for confirmation
- Measured activity calculated using STAYSL¹

1. Greenwood, Lawrence R., and Christian D. Johnson. *User guide for the STAYSL PNNL suite of software tools*. No. PNNL-22253. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2013.

Target	Reactions	Product	PNNL Exposure (Measured [mBq/kg])	ACTIVATE PNNL Saturatio [mBq/kg]
Nickel	(n,p), (n,2np), (n,3np)	⁵⁸ Co	4.34 ± 0.46	5.39
Cobalt	(n,2n), (p,np)	⁵⁸ Co	6.97 ± 1.25	5.47

Current status of project

- FY2024 LANSCE beam minimal operation
- Currently exposing multiple materials to saturation at **PNNL and LANL**
 - Co, Ni, Ti, Cr, Nb
 - First step of benchmarking code
 - Higher altitude at LANL means proton reactions become more prevalent
- Will be driven to SURF (Lead, SD)
- GPS tracker to be attached

A THE A	THE REPORT OF A REAL PROPERTY OF
13,711 ft	A STAR BULLER
12,427 ft	
11,199 ft	PININL
10,026 ft	
8,909 ft	d Idaho
7,850 ft	Photo Star Barris
6,848 ft	Oregon
5,905 ft	Carlin Carl
5,021 ft	a his fail and
4,199 ft	ST. STR. BROKE
3,439 ft	
2,742 ft	Sector Contains
2,111 ft	Sale Callerants
1,547 ft	o Nevado
1,052 ft	California
630 ft	
283 ft	Las Vegas
17 ft	
-160 ft	See as
-233 ft	Los Angeles
	Inclusion and L

	Target	Product	Half-life (days)	Time to saturation (days)	PNNL Saturation (mBq/kg)	PNNL -> SURF (mBq/kg)	LANL Saturation (mBq/kg)	LANL-> SURF (mBq/kg)
Neutron reaction	Cobalt	⁵⁸ Co	70.88	354.42	5.63	0.085	30.76	0.13
	Nickel	⁵⁸ Co	70.88	354.42	5.53	0.082	29.97	0.12
	Niobium	^{92m} Nb	10.12	50.60	1.93	0.24	10.60	0.30
Proton reaction	Chromium	⁵² Mn	5.59	27.95	0.055	0.011	0.33	0.016
	Titanium	⁴⁸ V	15.97	79.85	0.062	0.0043	0.34	0.0061

Source: https://en-us.topographic-map.com/

Stationary exposure schedule

- Niobium, chromium, and titanium from LANL are currently being counted at SURF
- Niobium sample exposed at PNNL had large uncertainty during counting. Reexposure to start soon.
- ⁵⁸Co production from nickel and cobalt samples won't reach saturation until ~August-September

PROJECT TIMELINE

Thank you

Aaron Hellinger Email: aaron.hellinger@pnnl.gov Ph: (509) 375-7332

