

The Berkeley Atlas: A database of absolute cross sections for inelastic gamma-ray production with 14 MeV neutrons

Workshop for Applied Nuclear Data Activities (WANDA 2025)

Mauricio Ayllon Unzueta Lawrence Berkeley National Laboratory February 13, 2025

The Berkeley Atlas Team

Dr. Mauricio Ayllon Unzueta Lawrence Berkeley National Laboratory

Dr. Lee Bernstein UC Berkeley / LBNL

Dr. David Brown Brookhaven National Laboratory

Dr. Emanuel Chimanski Brookhaven National Laboratory

Joe Henderson UC Berkeley

Dr. Marie-Laure Mauborgne SLB, Inc.

Dr. Patrick Peplowski Johns Hopkins Applied Physics Laboratory

Dr. Arun Persaud Lawrence Berkeley National Laboratory

Dr. Jack Wilson Johns Hopkins Applied Physics Laboratory

The Berkeley Atlas Team

	Team Members	Expertise					
institution		Measurements	Compilations	Evaluations	Processing	Validation	Applications
Johns Hopkins Applied Physics Laboratory (APL)	Patrick Peplowski (Project PI) Jack Wilson (Co-I)	\checkmark				\checkmark	\checkmark
Lawrence Berkeley National Laboratory	Arun Persaud (Institutional PI) Mauricio Ayllon-Unzueta (Institutional PI)	~					<
University of California, Berkeley	Lee Bernstein (Collaborator) Charles (Joe) Henderson (Graduate Student)	\checkmark					<
Brookhaven National Laboratory / National Nuclear Data Center	Emanuel Chimanski (Institutional PI) David Brown (Co-I)		~	<			
SLB, Inc.	Marie-Laure Mauborgne (Collaborator)	\checkmark					\checkmark

The nuclear data pipeline, from *Kolos et al.* (2022), **Current nuclear data needs for applications**, Phys. Rev. Res. 4.

Applications of Neutron Inelastic Scattering

- Neutron interrogation of an unknown material
 - Gamma-ray energies are isotopediagnostic
 - Gamma-ray intensities provide material abundances, if:
 - Gamma-ray branching ratios and
 - Gamma-ray production cross sections are known.

Applications: Explosive detection, Buried land mines, Planetary Science, Chemical weapons, UXO analysis, Drug detection, In-Vivo body composition, Minerals mining and exploration, Bulk materials (coal, cement)

Motivation – Nuclear Data Deficiencies

- Experimental work has revealed that nuclear data is not sufficient for many elements of interest. Improved nuclear data is required.
- Prior efforts in this area have identified:
 - Spurious (not-real) gamma-ray peaks
 - Lim et al., (2017)
 - Mauborgne et al. (2020)
 - Unphysical gamma-ray emission energy distributions (peak shapes):
 - Prettyman et al. (2006)
 - Peplowski (2020)
 - Inaccurate gamma-ray production rates
 - Yamashita et al. (2003)
 - Bruckner et al. (2011)
 - Mauborgne et al. (2020)
 - Peplowski (2020).

GEANT4 fails to reproduced 440-keV gamma-ray production from Na, as measured during a benchmarking experiment detailed by Peplowski (2020).

Motivation – Nuclear Data Deficiencies

- Experimental work has revealed that nuclear data is not sufficient for many elements of interest. Improved nuclear data is required.
- Prior efforts in this area have identified:
 - Spurious (not-real) gamma-ray peaks
 - Lim et al., (2017)
 - Mauborgne et al. (2020)
 - Unphysical gamma-ray emission energy distributions (peak shapes):
 - Prettyman et al. (2006)
 - Peplowski (2020)
 - Inaccurate gamma-ray production rates
 - Yamashita et al. (2003)
 - Bruckner et al. (2011)
 - Mauborgne et al. (2020)
 - Peplowski (2020).

SLB, Inc. uses measured gamma spectra from experiments to interpret data due to shortcomings in neutron cross section libraries (see example from Mauborgne et al., 2020)

Berkeley Atlas Project

- Produce an Atlas of cross sections, measured at 14 MeV neutron energy, to improve neutron cross section libraries.
- We have a new technique for making highprecision measurements of gamma-ray production cross sections using a DT neutron generator, paired with associated particle imaging (API).
- Upgrades to existing API system
- Perform identical measurements on a range of target material of interest for applied nuclear sciences.
- Provide cross-section measurements to the NNDC for evaluation and incorporation into future neutron cross section libraries releases.

Isotope	Gamma-Ray Lines (keV)	lsotope	Gamma-Ray Lines (keV)	Isotope	Gamma-Ray Lines (keV)
¹² C	4438	³⁵ Cl	1763	⁵⁹ Co	1099, 1190, 1292, 1459, 1481
¹⁴ N	2313	³⁹ K	1454	⁵⁸ Ni	1454
¹⁶ O	6129	⁴⁰ Ca	3736	⁶⁰ Ni	1332
²³ Na	440, 1634	⁴⁸ Ti	983	⁶³ Cu	670, 962
²⁴ Mg	1369	⁵² Cr	1434	⁶⁵ Cu	771
²⁶ Mg	1809	⁵⁴ Cr	834	⁶⁴ Zn	992
²⁷ AI	843, 1014, 2211	⁵⁵ Mn	858	⁶⁶ Zn	1039, 1873
²⁸ Si	1779	⁵⁴ Fe	1408	⁹⁰ Zr	1761
³² S	2232	⁵⁶ Fe	846, 1238, 1811	²⁰⁸ Pb	2616

The Atlas will include gamma-ray production cross sections for 27 different isotopes (38 different gamma-ray emissions) for materials of interest to the wide variety of applied nuclear fields listed previously.

Associated Particle Imaging (API)

- **Direct neutron flux measurements** with low uncertainties due to alpha-tagging.
- Only prompt reactions within coincident window (10's of ns).
- Quasi-monoenergetic 14.1 MeV neutrons.
- Strong background suppression.
- Compact, low-cost.

Progress since WANDA 2024

- Validated ability to make precise measurements of neutron flux on target.
- Replaced scintillator-based gamma-ray detectors (CeBr₃, LaBr₃, Nal) with HPGe.
 - 2.4 keV @ 661.7 keV
 - 30-ns timing resolution
- Validated measurement approach and data analysis process via trial measurements with titanium targets.

API alpha detector

Progress since WANDA 2024

- Validated ability to make precise measurements of neutron flux on target.
- Replaced scintillator-based gamma-ray detectors (CeBr₃, LaBr₃, Nal) with HPGe.
 - 2.4 keV @ 661.7 keV
 - 30-ns timing resolution
- Validated measurement approach and data analysis process via trial measurements with titanium targets.

Progress since WANDA 2024

- Validated ability to make precise measurements of neutron flux on target.
- Replaced scintillator-based gamma-ray detectors (CeBr₃, LaBr₃, NaI) with HPGe.
 - 2.4 keV @ 661.7 keV
 - 30-ns timing resolution
- Validated measurement approach and data analysis process via trial measurements with titanium targets.

2295.6 0.87 PS

1312.104

2.4 keV FWHM @ 661.7 keV

Schedule

- 24-28 March 2024: Commissioning experiment with Fe target
 - Validate our experimental technique using a well-known cross section
 - Plan to write a technique paper detailing cross section measurements with DT-API & HPGe detectors
- May 2025: All thin-target measurements (27 isotopes, 38 separate gamma-ray emissions)
 - Publish the Berkeley Atlas
- Summer 2025: Thick-target measurements
- Early 2026: Incorporate measurements into ENDF evaluations & perform EMPIRE modeling.