Challenges in the Deployment of HALEU and Novel Moderators for Advanced Reactors Closeout

WANDA 2025

Theresa Cutler, Javier Ortensi

LA-UR-25-21499

Advanced Reactor Landscape

Sessions

- Customer Perspective
- Fuel Procurement and Experiment Needs
- Thermal Scattering Law Updates
- Safeguards

Customers

- NRC

- Kairos
- Westinghouse

Fuel Procurement and Experiment Needs

- Two Primary Facilities
 NCERC and SCRF/CX
- Deimos Testbed

New HALEU Fuel for both facilities

Thermal Scattering Law Updates

- Status of Current TSLs in ENDF
- TSLs needed for Advanced Reactors

Material	Available TSL ENDF Files	Differential XS Meas.	Integral XS Meas.	Benchmark* Experiments
Graphite	Yes	Yes	Yes	Yes
ZrH _{1.6} & ZrH ₂	Yes	Yes	Yes	Yes
YH ₂	Yes	Yes	Yes	No
Be metal	Yes	Yes	Yes	No
BeO	Yes	No	Yes	No
MgO	Yes	Yes	Yes	No
Be ₂ C	Yes	No	No	No
FLiBe	Yes	No	No	No
SiC	Yes	Yes	Yes	No
Zr ₃ Si ₂	No	No	No	No

204

137

188

322

146

12

91

95

385 247

1.014

1.012 -1.010 1.008 1.008

Data Needs for NMC&A for HALEU Fuel Cycle

Multi-physics code predictions for HALEU Fuel Cycle

Material	Domestic Safeguards ¹	International Safeguards ²	
Total U	whole g (for enriched U) whole kg (for depleted U) ²³⁵ U isotope wt%	g (for U enriched in ²³⁵ U or ²³³ U) kg (for natural U, depleted U)	
235U	whole g	g	
233U	whole g	g	
²³³ U + ²³⁵ U	-	g	
Total Pu	whole g ²⁴⁰ Pu isotope wt%	g	
²³⁸ Pu	g to tenth	g	
²³⁹ Pu	-	g	
²⁴⁰ Pu	-	g	
²⁴¹ Pu	-	g	
²⁴² Pu	whole g	g	
²³⁹ Pu + ²⁴¹ Pu	whole g	g	
Thorium	whole kg	kg	

Connections to Other Tracks

- Deterrence: ²³⁵U(n,n') differential measurements
- NMC&A: (α,n) benchmarks
- Fusion: (n,α) reactions
- Data Preservation: benchmarks
- Data Preservation: compiled data

Key Takeaways

- DNCSH collaboration highlights the need by industry and support from NRC to license new designs
- Industry is moving forward with test facilities, using <u>large</u> <u>margins</u> to account for ND uncertainties
- Immediate need to update ND libraries and data calibration for design optimization/safety analysis
 - competitive power designs
 - safe designs that can build confidence in these technologies
- Many TSLs have been added (might need improvements)
- Safeguards needs
 - benchmarks to reduce uncertainty in fundamental physics/ detector response
 - new safeguards methods are needed which have yet-to-be-defined ND needs

Specific Needs (High Priority)

Differential measurements

- ${}^{9}\text{Be}(n,\alpha)$ cross section
- ¹⁹F(n,n') cross section
- ⁷Li(n,γ) cross sections

Integral measurements and TSL validation

- FLiBe
- YH_x
- Large graphite moderators
- HALEU TRISO with varied packing fractions
- Reactivity coefficients
- Elevated temperatures

10

Specific Needs

NDA/NMC&A Benchmarks for Detector Response (High Priority)

- Fundamental physics in ICSBEP
- Full uncertainty quantification to reduce measurement uncertainty
- Measurements application to all parts of the fuel cycle
- Intentional R&D to quantify NMC&A inventory for each class of reactor (U/Pu, Th, salt-based, thermal/ fast spectrum) (Low Priority)

General Needs (High Priority)

- Immediate needs to update ND libraries and data calibration for design optimization/safety analysis
- Larger integral experiment designs to better match vendor needs
 - Built-in flexibility (horizontal split table)
 - Using **prototypic fuel forms** planned for current vendor designs
 - Emphasis on modeling/ simulation to validate the experiments
 - HALEU TRISO benchmarks at varied packing fractions (realistic)
 - HALEU 10-20 wt% ²³⁵U standard fuel benchmarks
 - HALEU benchmarks with a variety of moderators

General Needs (Lower Priority)

- TSLs for novel moderators
- TSL covariance data
- Differential measurements at extreme temperatures (cryogenic and high ranges)

