

Bridging Thermal Scattering Law Data Gaps for Novel Moderators in Advanced Reactors

Iyad Al-Qasir Nuclear Data Group

Chris W. Chapman, Kemal Ramic, Goran Arbanas, Mathieu Dupont, Dorothea Wiarda, Luiz Leal, William A. Wieselquist

WANDA 2025, Arlington, VA, Feb. 10-13, 2025

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Outline

- Thermal Neutrons
- Summary of HALEU ARDP characteristics
- Neutron moderators' status
 - High Temperature Thermal Scattering Law (TSL) DNCSH Neutron Scattering Experiments
 - Critical DNCSH Benchmark Experiments
- Thermal Scattering Law Sensitivity and Uncertainty Status
- Potential Avenues

Thermal Neutrons

- Thermal neutrons have wavelengths (~Å) comparable to the separation distances of atoms in solids.
- Hence, the thermal motion of atoms or molecules in the scattering medium can no longer be ignored
- Thermal neutron scattering law (TSL) describes the neutron scattering intensity as a function of energy and momentum transfer between the thermal neutron and the scattering medium

Summary of HALEU ARDP characteristics

Lead	Reactor name	Reactor type	Neutron spectrum	Fuel type	Power	Enrichment (wt% ²³⁵ U)	Moderator	Reflector	Coolant
TerraPower	Natrium	SFR	Fast	Sodium-bonded metallic alloy U-10Zr Pins	345 Mwe	19.75	N/A	_	Sodium
X-energy	Xe-100	Pebble Bed HTGR	Thermal	UCO TRISO spherical compacts	80 Mwe	15.5	Graphite	Graphite	Helium
Kairos Power	KP-FHR	Pebble Bed FHR	Thermal	UCO TRISO annular spherical compacts with low-density graphite cores	140 MWe	19.55	Pyrolytic graphite, FLiBe	Graphite	FLiBe
Westinghouse Nuclear	eVinci	Heat-pipe Microreactor	Thermal	UCO TRISO cylindrical compacts	5 MWe	19.75	Graphite	-	Sodium Heat Pipes
Southern Company and TerraPower	MCFR	MSR	Fast	Dissolved uranium in salt (NaCl-UCl ₃)	800 MWe	HALEU	N/A	_	Salt
BWXT	BANR	HTGR	Thermal	UN TRISO in SiC, carbon matrix compact, additively manufactured	50 MWth	19.75 (Baseline Design)	Graphite	-	Helium
ARC	ARC-100	SFR	Fast	Sodium-bonded U-10Zr pins	100 Mwe	20 Max.; 13.1 Avg.	N/A	Stainless steel	Sodium
GA-EMS	FMR	GFR	Fast	UO_2 pellets	44 Mwe	19.75	N/A	Zr ₃ Si ₂ and graphite	Helium
MIT	HC-HTGR	HTGR	Thermal	TRISO compact	~58 MWth	-	Graphite	—	Helium

Neutron moderators' status

Material	Available TSL ENDF Files	Differential XS Meas.	Integral XS Meas.	Benchmark* Experiments
Graphite	Yes	Yes	Yes	Yes
ZrH _{1.6} & ZrH ₂	Yes	Yes	Yes	Yes
YH ₂	Yes	Yes	Yes	No
Be metal	Yes	Yes	Yes	No
BeO	Yes	No	Yes	No
MgO	Yes * *	Yes * * *	Yes	No
Be ₂ C	Yes	No	No	No
FLiBe	Yes	No	No	No
SiC	Yes	Yes* * *	Yes * *	* No
Zr ₃ Si ₂	No	No	No	No

Fassino et al., "Current State of Benchmark Applicability for Commercial-Scale HALEU Fuel Transport," ORNL/TM-2024/3248.

Al-Qasir et al., Trans. ANS, 130, 750–753 (2024).

- * Benchmark experiments involve fuel compositions ranging from 5 to 19.75 wt% enrichment of ²³⁵U exhibiting a neutron flux of <0.625 eV (*International Handbook of Evaluated Reactor Physics Benchmark Experiments* [IRPhE]).
- * * MgO TSL sub-library added recently to ENDF/B-VIII.1 as a neutron filter.
- * * * Neutron scattering measurements were performed recently, not published yet.

High-temperature DNCSH neutron scattering experiments

UF6 transportation 10-20% enrichment gap Non-fissile material validation Fissile salts Graphite and advanced moderator nuclear data

- Two proposals have been awarded by DNCSH Experiment and Analysis Work Package (EAW) Call #1
 - State-of-the-art neutron scattering instruments will be used for neutron scattering measurements of differential and integral quantities.
 - Modern computational solid-state physics methods will be utilized to study atomic vibrations as a function of temperature

Material	Available TSL ENDF files	Differential XS measurement	Integral XS measurement	Benchmark experiments
Graphite	Yes	Yes	Yes	Yes
BeO	Yes	No	Yes	Νο
MgO	Yes	Yes	Yes	No
Be ₂ C	Yes	No	No	Νο
FLiBe	Yes	No	No	No
SiC	Yes	Yes	Yes	Νο
ZrC	No	Yes	Yes	No

Critical benchmark DNCSH experiments

- 14 proposals have been awarded by DNCSH EAW Call #1
- Of the 14 proposals, 6 were awarded for graphite, 3 for SiC, 1 for zirconium hydride, and 1 for beryllium metal

	Award	Moderator	Lead Lab	Partners
1	Benchmark of Historical Y-12 Critical Experiments with UF6 Cylinder Model 8A Containers	UF6, polyethylene, concrete	ORNL/LLNL	ORNL, CS Engineering, University of Tennessee
2	Evaluation of already performed critical experiments and design of new critical experiments with the new 19.75 wt% 235U enriched IPEN/MB-01 core for ICSBEP publication	Graphite, water, heavy water	ORNL	GE Vernova, IPEN (Brazil)
3	Evaluation of SLOWPOKE-2 Refuel Measurements	Beryllium metal	ORNL	Canadian Nuclear Laboratories (Canada)
4	Evaluation and BM Development of Reactor Critical Experiments of the RPI Reactor Critical Facility with Noteworthy Non-fissile SS Element Sensitivity	Water	ORNL	INL, Rensselaer Polytechnic Institute
5	Characterization of ISU's AGN-201 Reactor for Qualification as an ICSBEP Benchmark	Graphite	ORNL	GE Vernova, Idaho State University
6	Evaluation of Critical Configurations of the Missouri S&T Reactor	Water, graphite	ORNL	Missouri S&T
7	ZED-2 Measurements with In-Core Absorbers	Heavy water	ORNL	Canadian Nuclear Laboratories (Canada)
8	Critical Experiments Targeting Optimum Moderation Conditions	Water	PNNL	SNL, ORNL
9	PETALE benchmark	Water	LLNL	ORNL, EPFL, University of California-Berkeley
10	Benchmark Validation for Transportation of TRISO HALEU Fuel for Advanced Reactors	GRAPHITE, SiC from pebbles	INL	BWXT, Kairos, X-Energy, Radiant, Jfoster, U. Mich.
11	eq:thm:thm:thm:thm:thm:thm:thm:thm:thm:thm	GRAPHITE, SiC from pebbles	LANL	Kairos Power
12	Thermal/Epithermal eXperiments (TEX) Additional Chlorine Configurations to Provide Validation for TerraPower's Molten Chloride Salt Fuel	Polyethylene	LLNL	LANL, TerraPower
13	eDeimos Experiments with Westinghouse for new HALEU Benchmarks	GRAPHITE, SiC from compacts and zirconium hydride	LANL	Westinghouse
14	HALEU Critical Experiments in Water Moderated UO2 Fuel Rod Lattices	Water	SNL	ORANO

UF6 transportation 10-20% enrichment gap Non-fissile material validation

Fissile salts

Graphite and advanced moderator nuclear data

Critical benchmark DNCSH experiments

- 14 proposals have been awarded by DNCSH EAW Call #1
- Of the 14 proposals, 6 were awarded for graphite, 3 for SiC, 1 for zirconium hydride, and 1 for beryllium metal

		Matorial	Available TSI	Differential	Intogral	Dono o la una curril att	Partners
1	Benchma	Mulenui	Available 13L	Differentia	integral	Benchmark	ORNL, CS Engineering,
			ENDF Files	XS Meas.	XS Meas.	Experiments	University of Tennessee
	Eval					Experiments	
2	expe	Graphite	Yes	Yes	Yes	Yes 🗸	GE Vernova, IPEN (Brazil)
_						N/	Canadian Nuclear
3		ZrH_{1} &	Yes	Yes	Yes	Yes	Laboratories (Canada)
	Evalua	7-4				\checkmark	INL, Rensselaer
4		2 1 П ₂					Polytechnic Institute
E	Charact	YH.	Yes	Yes	Yes	No	GE Vernova, Idaho State
5	Charact	2	105	100	100		University
6		Po motal	Voc	Vac	Vac	No	Missouri S&T
7		be merai	res	162	res		Canadian Nuclear
							Laboratories (Canada)
8		BeO	Yes	No	Yes	No	SNL, ORNL
۹							DRNL, EPFL, University of
		Mao	Voc	Vee	Yes	No	California-Berkeley
10	Ber	MgO	162	162	163		BWXT, Kairos, X-Energy,
							Radiant, Jfoster, U. Mich.
		Be ₂ C	Yes	NO	NO	NO	Kaina Davan
11							Kairos Power
	Thermal	Fliße	Yes	No	No	No	
12	mermau		105				LANL, TerraPower
		c:c	Vaa	Vee	Vee	No. (
13		210	res	Te2	res		Westinghouse
						•	
14		Zr ₂ Si ₂	No	No	No	No	ORANO
14							URANU

UF6 transportation 10-20% enrichment gap Non-fissile material validation Fissile salts Graphite and advanced moderator nuclear data

Thermal Scattering Law Sensitivity and Uncertainty Status

- Transport codes, like SCALE, calculate sensitivities of integral quantities to 1D cross sections $\sigma(E_i)$, but they do not address sensitivities to differential cross sections $\sigma(E_i \rightarrow E_f, \Omega_i \rightarrow \Omega_f)$.
- Covariance data are accessible for all neutron files but not for the 2D TSLs
- Presently, no published ENDF evaluations include covariance data for TSL or its corresponding scattering cross sections due to:
 - No agreed upon method for calculating covariances
 - No standardized format for storing & disseminating TSL covariances
 - Inability of transport codes to handle differential cross section covariances
- Recent efforts have focused on evaluating covariances in thermal neutron scattering for moderators like H₂O, D₂O, and graphite^{1,2,3}
- 1. C. W. Chapman et al., "Methodology for Generating Covariance Data of Thermal Neutron Scattering Cross Sections," Nucl. Sci. Eng. 195, 13 (2021).
- 2. J. P. Scotta et al., "Generation of the ¹H in H₂O Neutron Thermal Scattering Law Covariance Matrix of the CAB Model," *EPJ Nucl. Sci. Technol.* **4**, 32 (2018).
- J. C. Holmes et al., "A Phonon-Based Covariance Methodology for ENDF S(α, β) and Thermal Neutron Inelastic Scattering Cross Sections," Nucl. Sci. Eng. 184, 84 (2016).

Thermal Scattering Law Sensitivity and Uncertainty

- Three work packages have in initiated by DNCSH
 - Scoping study of sensitivities due to TSLs (Assess Impact of Unknown TSL on k, c_k)
 - Formatting and processing of eventual TSL covariance (TSL Uncertainty in ENDF/B for H₂O)
 - Code updating to use eventual TSL covariance (SCALE Inclusion of TSL Uncertainty in c_k)

Potential Avenues

- Tuning neutron moderators: enhance neutron moderators through innovative material design at the microscopic (atomistic) and/or macroscopic (engineering) levels
 - ✓ Doping
 - ✓ Two-phase composite materials
- Yttrium Hydride: High-temperature stability up to 800 °C

Isotope Ab (%)		Scatt. XS (b)	Abs. XS (b)	
⁸⁸ Sr	82.58	6.42	0.058	
Y	100	7.7	1.28	

Acknowledgment

This work was performed under the framework of the DOE / US Nuclear Regulatory Commission (NRC) Collaboration for Criticality Safety Support for Commercial-scale HALEU (DNCSH) Fuel Cycles Project

Thank you

Materials science and engineering of neutron moderation

- Historically, core moderator and reflector materials consist of relatively simple compounds of a simple material type or simple composition (e.g., H₂O, D₂O, Be, BeO, Graphite, ZrH₂)
- Recently, compact thermal fission reactors are of increased interest because of their potential to lower construction cost, to enhance safety, and to facilitate portability to remote areas
- The compact nature of these cores requires good neutron economy, as well as preservation of other thermal, mechanical, and chemical properties, and more. How do we achieve this?

Materials engineering: Two-phase composite moderators

	Entrained phase	Matrix phase
Scattering	High	Fair
Absorption	Low	Low
Thermal conductivity	Fair	High
Radiation resistivity	Fair	Good
Mechanical stability	Fair	Good
Examples	Graphite, Be, BeO, Be₂C , YH _{2-x} , ZrH _{2-x}	MgO, SiC

Snead et al., J. Asian Ceram. Soc. 10, 9 (2022).

Be₂C: reacts with moisture to form Be(OH)₂. However, as an entrained phase, it will not react

YH_{2-x}, ZrH_{2-x}: high-density matrix forms barriers that prevent hydrogen leakage

Entrained phase Entrained phase refers to a phase or component of a mixture that is carried along or transported by another medium or phase

Matrix phase

MgO-based composite moderators can exhibit considerably smaller critical volumes compared to volumes of nuclear graphite

15

CAK RIDGE National Laboratory

High-temperature TSL example: Aluminum

= 4.041 Å

Kresch et al., Phys. Rev. B 77, 024301 (2008).

CAK RIDGE National Laboratory

Inelastic scattering cross section

- Relative difference increases with increasing temperature
- $\sigma({\rm T})$ should be calculated using the PDOS corresponding to the same T

