

Data Needs for Nuclear Material Accounting and Safeguards in the HALEU Fuel Cycle

Mark Croce mpcroce@lanl.gov

WANDA 2025

LA-UR-25-21198

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA

Effective Nuclear Material Accounting and Safeguards are essential to enable use of nuclear power

- US Nuclear Regulatory Commission: "regulations require the licensee to maintain a nuclear material control and accounting (MC&A) program that tracks and verifies special nuclear material (SNM) that is on site"
 - Requirements defined in 10 CFR Part 74
 - Special Nuclear Material: uranium enriched in the isotope ²³⁵U
 - Strategic Special Nuclear Material: uranium enriched to 20% or more in the ²³⁵U isotope (dramatically increased requirements and cost associated with HEU)
- Global Security: "The objective of IAEA Safeguards is to deter the spread of nuclear weapons by the early detection of the misuse of nuclear material or technology"
 - International Treaty on the Non-Proliferation of Nuclear Weapons requires each Non-Nuclear Weapon State to conclude a safeguards agreement with the IAEA

https://www.nrc.gov/materials/fuel-cycle-fac/nuclear-mat-ctrl-acctng.html https://www.nrc.gov/reading-rm/doc-collections/cfr/part074/part074-0004.html https://www.iaea.org/topics/basics-of-iaea-safeguards

We need improved nuclear data to implement advanced fuel cycles – uncertainty is cost

- Nuclear materials provide good passive signatures (gamma rays, neutrons, radioactive decay heat) for quantifying their isotopic composition and mass with rapid, inexpensive nondestructive assay
- Advanced fuel cycle developers will rely on nondestructive assay to meet licensing requirements for nuclear material accounting
- Measurement techniques are limited by nuclear data

What is different about the HALEU fuel cycle?

- Enrichment (by definition)
 - ~19.75% vs ~3-5% ²³⁵U enrichment
- Wide array of fuel forms being considered
 - Pebbles
 - Molten salt
 - Metallic fuel elements
 - And sometimes things that look like traditional fuel rods
- Advanced reactors can achieve very high fuel burnup
- Fuel recycling being considered

The U.S. Department of Energy is supporting 10 U.S. advanced reactor designs to help mature and demonstrate their technologies within the next 15 years. https://www.energy.gov/ne/articles/infographic-advancedreactor-development

Case study: gamma spectroscopy peak ratio method Is it HEU or HALEU?

- Determines U enrichment from passive, nondestructive gamma spectroscopy
- Peak ratio method works for arbitrary sample geometry
- ITV target value: 3.2% RSD
- Really need <0.5% RSD for HALEU
- Alternative: sampling and costly laboratory analysis

19.75% enrichment Error bars plotted at 95% Cl

Uncertainty of this method depends on knowledge of gamma and X-ray emission probabilities

Uncertainty Analysis Study using FRAM method

FRAM: https://cdn.lanl.gov/files/app-to-isotopic-analysis-using-fram 06e9e.pdf

Relative Efficiency Curve study highlights discrepancies

- Outliers suggest opportunities for improved emission probability data
- Peak ratio codes rely on empirical tuning of emission probabilities to generate accurate results for a category of nuclear material – this approach breaks down for new materials

We have the tools to improve this data ...and to make use of the improved data

SOFIA microcalorimeter gamma spectrometer

Los Alamos Typical 65 eV FWHM resolution at 100 keV (~8x better than HPGe) ^{2/11/25}

Data improvements demonstrated

M. D. Yoho et al., NIM A 2020

Greater than 2x reduction in uncertainty for five Pu and Am branching ratios needed for isotopic analysis

-				, -		
Energy $[keV]$	Isotope	NNDC BR	$\mu_{BR} \ [\%]$	This work BR	$\mu_{BR} \ [\%]$	μ_{BR} Agreement
125.21	²³⁹ Pu	5.63×10^{-5}	2.7	5.51×10^{-5}	13	-0.2
125.3	$^{241}\mathrm{Am}$	4.08×10^{-3}	2.5	4.08×10^{-3}	1.0	0.0
144.201	$^{239}\mathrm{Pu}$	2.83×10^{-4}	2.1	2.87×10^{-4}	1.0	0.6
146.094	239 Pu	1.19×10^{-4}	2.5	1.22×10^{-4}	1.4	0.7
146.55	$^{241}\mathrm{Am}$	4.61×10^{-4}	2.6	4.75×10^{-4}	0.75	1.2
150.04	$^{241}\mathrm{Am}$	7.40×10^{-5}	3.0	7.76×10^{-5}	1.3	1.5
152.72	$^{238}\mathrm{Pu}$	9.29×10^{-4}	0.75	9.46×10^{-4}	0.78	1.7
159.955	$^{241}\mathrm{Pu}$	6.68×10^{-6}	1.1	6.87×10^{-6}	2.0	1.2
160.19	$^{239}\mathrm{Pu}$	6.20×10^{-6}	19	5.82×10^{-7}	331	-2.5
161.45	$^{239}\mathrm{Pu}$	1.23×10^{-4}	1.6	1.20×10^{-4}	1.6	-1.1
161.54	$^{241}\mathrm{Am}$	1.50×10^{-6}	20.0	3.52×10^{-6}	19.9	2.7
164.61	$^{241}\mathrm{Pu}$	4.56×10^{-5}	1.6	4.46×10^{-5}	2.0	-0.9
164.69	$^{241}\mathrm{Am}$	6.67×10^{-5}	3.7	7.78×10^{-5}	4.9	2.4
169.56	$^{241}\mathrm{Am}$	1.73×10^{-4}	2.3	1.72×10^{-4}	0.9	-0.3
171.393	²³⁹ Pu	1.10×10^{-4}	1.8	1.12×10^{-4}	1.4	0.9
175.07	$^{241}\mathrm{Am}$	1.82×10^{-5}	5.5	1.85×10^{-5}	2.8	0.3
188.23	$^{239}\mathrm{Pu}$	1.09×10^{-5}	10	8.63×10^{-6}	10.8	-1.6
189.36	$^{239}\mathrm{Pu}$	8.30×10^{-5}	1.2	7.91×10^{-5}	1.4	-2.6
191.96	$^{241}\mathrm{Am}$	2.16×10^{-5}	4.6	2.01×10^{-5}	2.8	-1.3
208.005	$^{241}\mathrm{Pu}$	5.19×10^{-4}	1.4	5.34×10^{-4}	1.9	1.2
208.01	$^{241}\mathrm{Am}$	7.91×10^{-4}	2.4	8.08×10^{-4}	5.4	0.4

Improved data directly translates to improved nondestructive assay and reduced cost of the HALEU fuel cycle

Gamma-ray data (especially emission probabilities):

- **Urgent need**: Low Enriched Fuel Fabrication Facility (LEFFF) making commercial HALEU TRISO fuel in 2026 (use as testbed), operational reactors in next few years
- **High impact**: enables maximum use of cost-effective measurement tools to meet licensing requirements
- Widely applicable: more robust analysis with germanium detectors, achieve uncertainty limits with ultra-high-resolution microcalorimeters
- Demonstrated path forward
- Method applies to general need for improved photon emission probabilities (e.g. ¹³⁵Xe, ^{133m}Xe, ^{131m}Xe...)

