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The scientific goals described in this talk are:

1) We, as afield, want to accelerate the timeline to progress on solving
application questions.

2) We do that by designing and selecting experiments predicted to reliably
reduce uncertainties on an application quantity of interest.*

*Experiments are expensive and time intensive. You better be sure up-front they have
the desired impact on your application.
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FPARADIGM's goals are an example of the broader
guestion we are trying to answer for the field:

1) We, as a field, want to accelerate the timeline to progress on solving
application questions.

2) We do that by designing and selecting experiments predicted to reliably
reduce uncertainties on an application quantity of interest.

FARADIGM goals:

1) We want to accelerate progress on understanding 2%°Pu 1-600 keV nuclear data
from 25 to 3 years.

2) We want to reliably reduce 2%°Pu nuclear data uncertainties by 50% by selecting
an optimal differential and integral experiment combination to do so.



Our target nuclear data are biased &
uncertain because supporting data poor.

* Nuclear theory: no reliable URR model.
« Differential exp.: scarce/uncertain due to low neutron flux.

* Integral experiments sensitive to this range are sparse
and poorly calculated.
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Intermediate 23°Pu ND are crucial input for the weapons program, criticality safety, etc.!



ND unc. on application simulations can be reduced via
adjustment to related integral exp. IF YOU TRUST THEM.

The linear ND pipeline
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We want to reduce 23°Pu ND below that line.
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Historic example: Understanding large bias in precise
Intermediate Zeus crit took 25 years thanks to slow pipeline!

-,

« Challenge: to go to intermediate energies, we need
reflector materials that are not well-understood.

« Example Zeus experiment:

— 1998 at TA-18, filled integral experiment gap in HEU
intermediate ND with reliable exp. unc. of <0.1 %.

— Halving the 10-sigma bias in Zeus (trusted unc!)
took ~25 years, because of multiple iterations of the s
linear pipeline to understand that large C/E linked to ==
poor 23°U & Cu (reflector) ND.

If differential AND integral experiments AND
theory were developed simultaneously, the Zeus
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The key step to accelerate understanding nuclear data is executing a
decision-making tool for exp. selection. It turns around the pipeline.
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We investigate at the get-go what differential and integral experiments along with
theory improvements will reliably reduce unc. in ND. Acceleration of process requires:
* Having a team that delivers input data from all parts of the pipeline.

Machine learning to select optimal experiments to reduce unc.
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AI/ML is required as the selection process includes high-
dimensional input data to avoid repeating past experiments.
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Experiments were selected within a year with Al/ ML metrics.
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LANSCE: DICER measurement of
63Cu(n,tot) cross section and
analysis of ®3Cu(n,g) cross section.
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Yes, the field can answer : What experiment can reliably
reduce uncertainties of my application quantity of interest!

What made it possible for this What is needed for the future:
example:

Team

Input data

Algorithms

Codes

®  Somp

Having team across the pipeline.

Historic experiments, mean values
and covariance. Please consider that
we had a well-defined (smaller) scope
than other applications might have!

Al/ ML to digest 12,000 x 12,000
problem.

We had adjustment tools, NJOY,
MCNP, CoH available.

Have expertise across the pipeline and complex as needed.

Curated and comprehensive differential and integral
experiments are needed-> Evaluators need to share their
input data and open database is needed.

Complete libraries of model curves or mid-fi covariances!
Sensitivity libraries tying nuclear data to applications!

Algorithms to deal with higher-dimensional data.
Al/ML codes to deal with metadata features.

Community tools for adjustments, sensitivities,
processing, modeling are needed.
Comprehensive framework needs to be able to use them!
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Curated and comprehensive differential and integral
experiments are needed-> Evaluators need to share their
input data and open database is needed.

Complete libraries of model curves or mid-fi covariances!
Sensitivity libraries tying nuclear data to applications!

Algorithms to deal with higher-dimensional data.
Al/ML codes to deal with metadata features.

Community tools for adjustments, sensitivities,
processing, modeling are needed.
Comprehensive framework needs to be able to use them!

*Dedicated funding for this kind of work is needed as this work is non-trivial!
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