

Designing experiments predicted to significantly reduce uncertainties on a chosen application

Denise Neudecker

WANDA 2025, February 10, 2025

LA-UR-25-21118

PARADIGM team: K. Amundson, B. Bell, P. Brain, T. Cutler (co-PI), F. Diaby, M. Devlin (co-PI), N. Gibson, M. Grosskopf, J. Hutchinson, T. Kawano, F. Kazuki, A. Khatiwada, N. Kleedtke, E. Leal Cidoncha, B. Little, A.E. Lovell, A. McHugh, D. Neudecker (PI), A. Stamatopoulos, C. Thompson, S.A. Vander Wiel, N. Walton

The scientific goals described in this talk are:

- 1) We, as a field, want to accelerate the timeline to progress on solving application questions.
- 2) We do that by designing and selecting experiments predicted to reliably reduce uncertainties on an application quantity of interest.*

*Experiments are expensive and time intensive. You better be sure up-front they have the desired impact on your application.

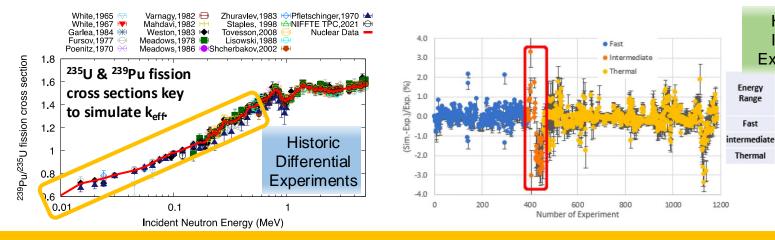
The scientific goals described in this talk are:

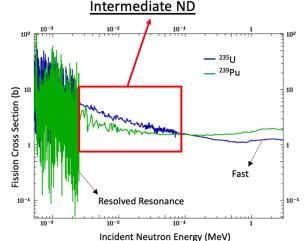
*Experiments are expensive and time intensive. You better be sure up-front they have the desired impact on your application.

3

PARADIGM's goals are an example of the broader question we are trying to answer for the field:

- 1) We, as a field, want to accelerate the timeline to progress on solving application questions.
- 2) We do that by designing and selecting experiments predicted to reliably reduce uncertainties on an application quantity of interest.


PARADIGM goals:


- 1) We want to accelerate progress on understanding ²³⁹Pu 1-600 keV nuclear data from 25 to 3 years.
- 2) We want to reliably reduce ²³⁹Pu nuclear data uncertainties by 50% by selecting an optimal differential and integral experiment combination to do so.

Our target nuclear data are biased & uncertain because supporting data poor.

- Nuclear theory: no reliable URR model.
- Differential exp.: scarce/uncertain due to low neutron flux.
- Integral experiments sensitive to this range are sparse and poorly calculated.

Energy

Fast

Historic

Integral

Experiment

Cases

382

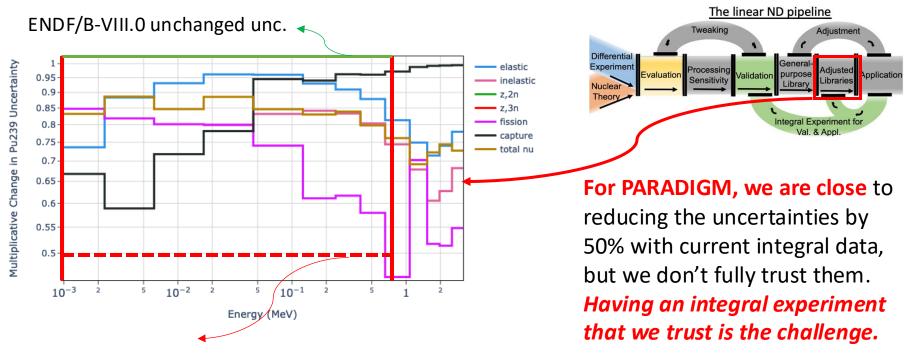
55

728

Average

(Sim.-Exp.)/

Exp. (%)


0.029

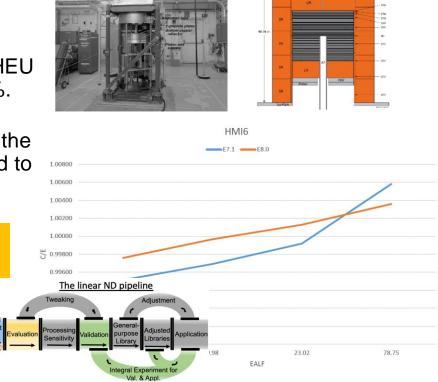
-0.74

-0.24

Intermediate ²³⁹Pu ND are crucial input for the weapons program, criticality safety, etc.!

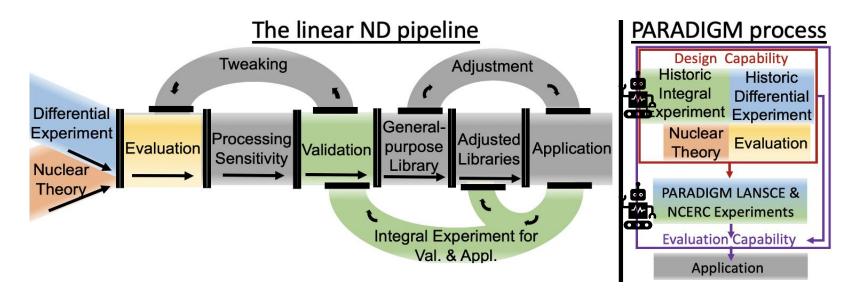
ND unc. on application simulations can be reduced via adjustment to related integral exp. *IF YOU TRUST THEM*.

We want to reduce ²³⁹Pu ND below that line.

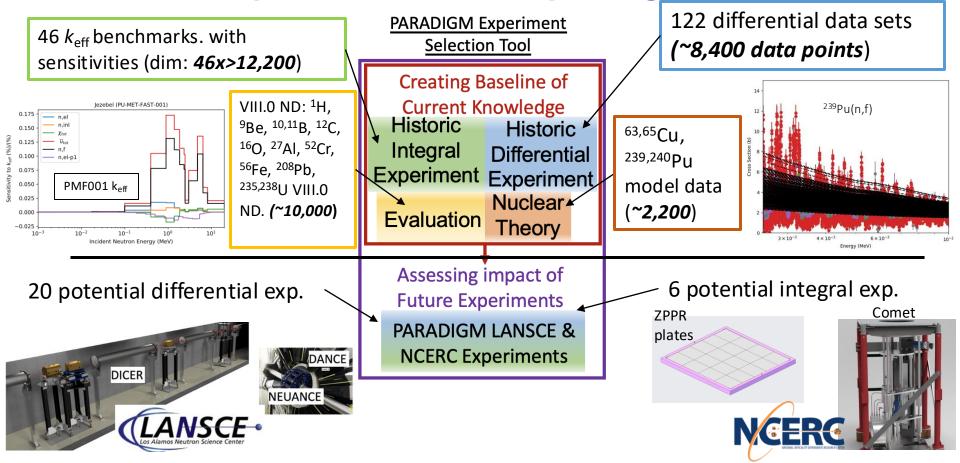


Historic example: Understanding large bias in precise intermediate Zeus crit took 25 years thanks to slow pipeline!

Experimen


- Challenge: to go to intermediate energies, we need reflector materials that are not well-understood.
- Example Zeus experiment:
 - 1998 at TA-18, filled integral experiment gap in HEU intermediate ND with reliable exp. unc. of <0.1 %.
 - Halving the 10-sigma bias in Zeus (trusted unc!) took ~25 years, because of multiple iterations of the linear pipeline to understand that large C/E linked to poor ²³⁵U <u>& Cu</u> (reflector) ND.

If differential AND integral experiments AND theory were developed simultaneously, the Zeus issue could have been resolved in 3 years.


The key step to accelerate understanding nuclear data is executing a decision-making tool for exp. selection. It turns around the pipeline.

We investigate at the get-go what differential and integral experiments along with theory improvements will reliably reduce unc. in ND. Acceleration of process requires:

- Having a team that delivers input data from all parts of the pipeline.
- Machine learning to select optimal experiments to reduce unc.

AI/ML is required as the selection process includes highdimensional input data to avoid repeating past experiments.

Experiments were selected within a year with AI/ ML metrics.

2

Experiments

ential

Differe

ndidate

NCERC: Cu reflector, Pu fuel

• Alumina for 30-600 keV.

DICER

• Alumina/Graphite for 1-30

keV.

LANSCE: DICER measurement of ⁶³Cu(n,tot) cross section and analysis of ⁶³Cu(n,g) cross section.

	I	D-Optim	ality for PARADIC	GM Isoto	opes 1-600keV	Optimistic			
None		0.19	0.15	0.2	0.2	0.17	0.21		
²⁴⁰ Pu inelastic	2.9	3.1	3.1	3.1	3.1	3.1	3.1		
²⁴⁰ Pu fission	24	24	24	24	24	24	24		
²⁴⁰ Pu elastic	5.3	5.5	5.4	5.5	5.5	5.5	5.5		- 20
240 Pu $\overline{\nu}$	5.1	5.3	5.3	5.3	5.3	5.3	5.3		
²⁴⁰ Pu capture	4.8	5	5	5	5	5	5		
²⁴⁰ Pu total	3.8	4	4	4	4	4	4		
⁶⁵ Cu inelastic	2.2	2.3	2.3	2.4	2.3	2.3	2.4		
⁶⁵ Cu elastic	2.7	2.9	2.9	2.9	2.9	2.9	2.9		- 15
⁶⁵ Cu capture	4.5	4.7	4.7	4.7	4.7	4.7	4.7		
¹⁰ B total	2.7	2.9	2.8	2.9	2.9	2.8	2.9		
⁶³ Cu inelastic	1.7	1.9	1.9	1.9	1.9	1.9	1.9		
⁶³ Cu elastic	5.9	6.1	6.1	6.1	6.1	6.1	6.1	1	- 10
⁶³ Cu capture	9.3	9.4	9.4	9.5	9.5	9.4	9.5		
²³⁹ Pu inelastic	7.5	7.7	7.7	7.7	7.7	7.7	7.7		
²³⁹ Pu elastic	5.8	6	6	6	6	6	6		
²³⁹ Pu fission	10	11	11	11	11	11	11		- 5
²³⁹ Pu v	3.4	3.6	3.6	3.6	3.6	3.6	3.6		Ŭ
²³⁹ Pu capture	5.1	5.3	5.2	5.3	5.3	5.3	5.3		
²³⁹ Pu PFNS	0.69	0.89	0.85	0.9	0.89	0.86	0.9		
²³⁹ Pu total	4.4	4.6	4.6	4.6	4.6	4.6	4.6	2	
	None	Al ₂ O3 (4) B (2) opt.	Al ₂ O3 (9) B (2) opt.	Al ₂ O3 (8) grpht (8) opt.	Al ₂ O3 (12) opt.	Al ₂ O3 (7) B (2) opt.	grpht (8) Al ₂ O3 (8) opt.		,

Candidate Integral Experiments

Yes, the field can answer : What experiment can reliably reduce uncertainties of my application quantity of interest!

	What made it possible for this example:	What is needed for the future:		
Team	Having team across the pipeline.	Have expertise across the pipeline and complex as needed.		
Input data	Historic experiments, mean values and covariance. Please consider that we had a well-defined (smaller) scope than other applications might have!	 Curated and comprehensive differential and integral experiments are needed → Evaluators need to share their input data and open database is needed. Complete libraries of model curves or mid-fi covariances! Sensitivity libraries tying nuclear data to applications! 		
Algorithms	AI/ ML to digest 12,000 x 12,000 problem.	 Algorithms to deal with higher-dimensional data. AI/ML codes to deal with metadata features. 		
Codes	We had adjustment tools, NJOY, MCNP, CoH available.	 Community tools for adjustments, sensitivities, processing, modeling are needed. Comprehensive framework needs to be able to use them! 		

Yes, the field can answer : What experiment can reliably reduce uncertainties of my application quantity of interest!

	What made it possible for this example:	What is needed for the future:		
Team	Having team across the pipeline.	Have expertise across the pipeline and complex as needed.		
Input data	Historic experiments, mean values and covariance. Please consider that we had a well-defined (smaller) scope than other applications might have!	 Curated and comprehensive differential and integral experiments are needed → Evaluators need to share their input data and open database is needed. Complete libraries of model curves or mid-fi covariances! Sensitivity libraries tying nuclear data to applications! 		
Algorithms	AI/ ML to digest 12,000 x 12,000 problem.	 Algorithms to deal with higher-dimensional data. AI/ML codes to deal with metadata features. 		
Codes	We had adjustment tools, NJOY, MCNP, CoH available.	 Community tools for adjustments, sensitivities, processing, modeling are needed. Comprehensive framework needs to be able to use them! 		

*Dedicated funding for this kind of work is needed as this work is non-trivial!

Acknowledgements

- Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.
- NCERC is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

