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Summary

ML methods can assist evaluators and experimentalists to

» root out potential biases in evaluated ND

* reduce impact of systematic errors

 avoid understated uncertainties

 integrate analyses across diverse datasets

» optimize experiments (e.g., materials, geometry, measurements)

Al methods are exploding.

It's bleeding-edge, but disruptive computing science is impressive and could
dramatically accelerate analysis of diverse and complex datasets.
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Projects and Teams
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N D. Neudecker?, B. Pritychenko?, S. Vander Wiel3, N. Walton34 SLANL, “UTK

EUCL/ID Experiments Underpinned by Computational Learning
for Improvements in Nuclear Data

J. Alwin, B. Bell, A. Clark, T. Cutler, M. Grosskopf, W. Haeck, M. Herman, Al
J. Hutchinson, N. Kleedtke, J. Lamproe, R.C. Little, I. Michaud, D. Neudecker,
M. Rising, T. Smith, N. Thompson, S. Vander Wiel, N. Wynne

239py fast
Medium

FPARADIGM Shifting the Nuclear Data Evaluation Paradigm:
Parallel Approach of Differential and Integral Measurements

K. Amundson, B. Bell, P. Brain, T. Cutler, F. Diaby, M. Devlin,

N. Gibson, M. Grosskopf, J. Hutchinson, T. Kawano, F. Kazuki, A. Khatiwada, LANL
N. Kleedtke, E. Leal Cidoncha, B. Little, A.E. Lovell, A. McHugh,

D. Neudecker, A. Stamatopoulos, C. Thompson, S. Vander Wiel, N. Walton

Pu,U,Cu,Al,B,Be,Cr...
Large & Diverse
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Next-Generation Computational Methods

Machine Learning (ML) methods can target these goals:

1. Integrate diverse datasets to produce ND with higher-quality uncertainties
2. Optimize new experiments to reduce ND uncertainties & application bounds
3. Speed up the pipeline from experiment to evaluation

Outline
lllustrate ML work applied to these goals
Suggest how Atrtificial Intelligence (Al) could further accelerate the pipeline
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A) ML Applied to Root Out Biases ENDF/B-VIILL top 10 bias

That Are Difficult for Experts to Find candidates vs. VII1.0
* ML regression methods explain biases over a suite x5 e -
of criticality benchmarks: apuypres :

— mismatch b/w simulated and observed k.
— fit to thousands of ND sensitivities

233Py Vigr-res Hanaa

* ML interpretability methods quantify which ND
guantities best explain the biases
— Found some known issues & other new ones

239py(n, y)-therm Rematsa :
239py(n,f)-therm

239py(n,f)-res

14N(n,p)-therm

Observable per Broad Energy Group

234(n, y)-res

ML methods assist ND experts to identify signal in
large messy datasets. Keep experts in the loop!

________mmm ENDF/B-VIILO |

“PuMm.yyres ENDF/B-VIL.1

0 5 10 15

ML Methods: random forest, neural net, elastic net, support vector machine, SHAP, ALE Aggregated SHAP (pcm)
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PFNS Ratio to Maxw. (T=1.42 MeV)

AIACHNE project
B) ML Applied to Capture Uncertain Systematic Errors
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AIACHNE profect
B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods can pick out localized biases

Large Library of Potential Biases

Long Range Basis Fuctions Medium Range Basis Fuctions Short Range Basis Fuctions

TR
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AIACHNE profect
B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods can pick out localized biases
Can identify potential root causes from experiment features
- E.g. experiments with 6Li detectors are biased high at 100 to 300 keV (a known issue)

Horseshoe Induces Sparsity

Basis Functions to Capture Bias
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AIACHNE project
B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods in action
- Identifies disagreement above 10 MeV and increases uncertainty there

— Can scale to much larger cases (e.g. PARAD/IGM )
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PARADIGM project

C) Challenges with Integrating Diverse Datasets

Theory * Dim:"~2,200x 1,000 ND

‘ Nuclear * Sampled model curves for ¢355Cu, 239240py

* 20 candidate differential
experiments

r .H'Stomf » 122 differential data sets
\ . Differential ) .
* Dim: 8,400 data points

Y
h LoLAﬁNeutron Science Center Experiments
Candidate experiment
selfection Historic * 46 ks benchmarks with
Integral sensitivity profiles
Experiments * Dim:46x"~12,200

*  ENDF/B-VIII.O0 mean values and

. , . | /
gxf;r?rf;ismtegra covariance from H, °Be, 1911B, 12C,
16 27 52 56 208 235,238
. Dim:6x~12,200 O, "Al, ®*Cr, Fe, TP, #>U
* Dim:10,000 ND

i@ Los Alamos
See Peter Brain’s PARADIGM poster tomorrow



C) Challenges with Integrating Diverse Datasets

Processing challenges to wrangle the data
— Diverse energy specifications

— Large-scale computation of sensitivities
239py(n,f)

Analysis challenges for plausible uncertainties ® @ differential
— Discord (again) data
» No evaluation adequately fits all data _“13
« USU: unrecognized sources of uncertainty .
— Missing physics ;
* e.g., unresolved resonances in theory models
« extensions underway

— The ML formulation must reconcile data tensions _, ) -
 to avoid understating combined uncertainties.

—— sample
from CoH

Physics Needs: Advance theory and model development
%@ Los Alamos . . -
Ry ML Needs: Scaling workflows to larger diverse collections



PARADIGM project
D) Statistical ML Applied to Produce Better Uncertainties

ML methods can relieve systematic tensions within and between datasets
» E.g. shows benefit of adding Gaussian Processes uncertainties
« Combined uncertainties should be validated with statistical diagnostics

240py total cs 240py total cs

Arrow

shows a wild
side-effect of
overly-tight
correlations
claimedina
240py(n,f)
dataset

Prior from theory
Updated to data

Prior from theory
Updated to data
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_ Need: automated methods to find and loosen overly-
***************** constrained data uncertainties where needed e



EUCLID profect
E) ML Applied to Optimize Experiments

ML optimization methods search and D-opt measures uncertainty volume
optimize proposed experiments to best for correlated ND. It is targetable to
reduce uncertainties and compensating errors subsets of ND (e.g. fast energy range)

and to specific applications suites

Bayesian optimization of Pu geometry D-opt down-select to Al reflector
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New Al Scientists automate model building and comparison,
vastly accelerating scientific throughput

Large Language Model are leveraged t0 £ idea eneration I Experiment iteration
do compute-based scientific research: v S e SIS IEE .

. ; . IS : | Experiments | -
. Synthes|ze ||terature, EDK Innovation | _>\ Template |
* propose experiments, : I l > C:) :
* write code and execute ot | | | Dohe sr | :
- refine, and E l l """"""
* erte a paper [ Idea scoring / \_ ( Experiment )

. L archiving ) L Exec Script ) Data/Plots

The field is screaming fast! T

- k Al fi tright): . .
gﬂmﬂmﬁm Autonomous agents could assist ND evaluation

— Agent Laboratory: by implementing multiple ML methods to fuse
github.com/SamuelSchmidgal/Agentlaboratory/tree/main  djverse datasets and recommend what works

~ Aviary: best to deliver vetted uncertainties.
arxiv.org/abs/2412.21154

1@LosAlames  Needs: demonstration project; integration with Al researchers


https://github.com/SakanaAI/AI-Scientist/tree/main
https://github.com/SamuelSchmidgall/AgentLaboratory/tree/main
https://arxiv.org/abs/2412.21154

Al methods underlying popular image & video generators
(like DALL-E) are turning to hard science problems

DeepMind
- 7 GenCast
3 * e ST i T p forecasts
| 1 of Typhoon
Hagibis

7 days 5 days 3 days 1 day

Generative diffusion methods could be Caution: current approaches do not
trained on a sample of ND curves from theory  explicitly handle physical constraints
and asked to create similar curves that match ~ and correlated uncertainties. ND
given differential data. These tools can ingest  applications could push the field!
vast datasets and give fast answers.

~~~~~~~~~~~~~~~~~~ Diverse expertise is needed for development and validation



Summary

ML methods can assist evaluators and experimentalists to

» root out potential biases in evaluated ND

* translate discrepancies between datasets into appropriate uncertainties
 integrate analyses across diverse datasets

» optimize experiments (e.g., materials, geometry, measurements)

Al methods are exploding.

It's bleeding-edge, but disruptive computing science is impressive and could
dramatically accelerate analysis of diverse and complex datasets.
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L

ML and Al are well-poised to continue to
speed up and improve the ND pipeline.

Some needs to take advantage of ML/AL:

« Further collaborations with ML scientists
— Tailor ML methods to ND analysis workflows
— Require validation of uncertainties in large-

scale analyses

* |Infrastructure
— Accessible data, codes, etc.
— Accessible worked examples
— Shared development

« For Al (FAST moving)
— Integration with the Al researchers
— Capable computing resources

Los Alamos

AAAAAAAAAAAAAAAAAA

The needs are cross-
disciplinary.

Teams require

* experimentalists

e evaluators

* physicists

» data science
researchers



Confession

| mostly live here —

statistics

|

Artificial intelligence

5

Machine Learning
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Organizations, facilities, libraries, codes

NCGERC

NATIONAL CRITICALITY EXPERIMENTS RESEARCH CENTER,

PR 1@ os Alamos

NI
LORD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

NCSP

NUCLEAR CRITICALITY SAFETY PROGRAM

NIST . D e
National Laboratory
February 10, 2025 19
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