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Summary

ML methods can assist evaluators and experimentalists to

• root out potential biases in evaluated ND

• reduce impact of systematic errors 

• avoid understated uncertainties

• integrate analyses across diverse datasets

• optimize experiments (e.g., materials, geometry, measurements)

AI methods are exploding.  

It’s bleeding-edge, but disruptive computing science is impressive and could 

dramatically accelerate analysis of diverse and complex datasets.
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Projects and Teams

AIACHNE AI / ML Informed Californium Chi Nuclear Data Experiment  

D Brown1, A. Carlson2, M. Grosskopf3, R. Haight3, K. Kelly3,
D. Neudecker3, B. Pritychenko1, S. Vander Wiel3, N. Walton3,4

EUCLID Experiments Underpinned by Computational Learning 
for Improvements in Nuclear Data

J. Alwin, B. Bell, A. Clark, T. Cutler, M. Grosskopf, W. Haeck, M. Herman, 
J. Hutchinson, N. Kleedtke, J. Lamproe, R.C. Little, I. Michaud, D. Neudecker,
M. Rising, T. Smith, N. Thompson, S. Vander Wiel, N. Wynne

PARADIGM Shifting the Nuclear Data Evaluation Paradigm: 
Parallel Approach of Differential and Integral Measurements

K. Amundson, B. Bell, P. Brain, T. Cutler, F. Diaby, M. Devlin, 
N. Gibson, M. Grosskopf, J. Hutchinson, T. Kawano, F. Kazuki, A. Khatiwada, 
N. Kleedtke, E. Leal Cidoncha, B. Little, A.E. Lovell, A. McHugh, 
D. Neudecker, A. Stamatopoulos, C. Thompson, S. Vander Wiel, N. Walton
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Next-Generation Computational Methods 

Machine Learning (ML) methods can target these goals: 

1. Integrate diverse datasets to produce ND with higher-quality uncertainties

2. Optimize new experiments to reduce ND uncertainties & application bounds

3. Speed up the pipeline from experiment to evaluation

Outline

• Illustrate ML work applied to these goals 

• Suggest how Artificial Intelligence (AI) could further accelerate the pipeline
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A) ML Applied to Root Out Biases
     That Are Difficult for Experts to Find
• ML regression methods explain biases over a suite 

of criticality benchmarks:

− mismatch b/w simulated and observed 𝑘eff
− fit to thousands of ND sensitivities

• ML interpretability methods quantify which ND 
quantities best explain the biases

− Found some known issues & other new ones

Neudecker, Denise, et al. "Informing nuclear physics via 
machine learning methods with differential and integral 
experiments." Physical Review C 104.3 (2021): 034611.

Neudecker, Denise, et al. "Enhancing nuclear 
data validation analysis by using machine 
learning." Nuclear Data Sheets 167 (2020): 36-60.

EUCLID project

ML Methods: random forest, neural net, elastic net, support vector machine, SHAP, ALE 

ENDF/B-VII.1 top 10 bias 
candidates vs. VIII.0

ML methods assist ND experts to identify signal in 
large messy datasets. Keep experts in the loop!
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B) ML Applied to Capture Uncertain Systematic Errors

Substantial discord 
across datasets

AIACHNE project
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B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods can pick out localized biases

Large Library of Potential Biases 

AIACHNE project

ML Methods: sparsity, global/local shrinkage, horseshoe priors
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B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods can pick out localized biases

Can identify potential root causes from experiment features

− E.g. experiments with 6Li detectors are biased high at 100 to 300 keV (a known issue)

Horseshoe Induces Sparsity
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B) ML Applied to Capture Uncertain Systematic Errors

ML sparsity methods in action

− Identifies disagreement above 10 MeV and increases uncertainty there

− Can scale to much larger cases (e.g. PARADIGM )
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AIACHNE project

ML methods capture additional uncertainty 
in the face of unknown systematic errors
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C) Challenges with Integrating Diverse Datasets

Nuclear 
Theory

Historic 
Differential 

Experiments

Historic 
Integral 

Experiments

Evaluation

• ENDF/B-VIII.0 mean values and 
covariance from 1H, 9Be, 10,11B, 12C, 
16O, 27Al, 52Cr, 56Fe, 208Pb, 235,238U

• Dim: 10,000 ND

• 122 differential data sets
• Dim: 8,400 data points

• 46 keff benchmarks with 
sensitivity profiles

• Dim: 46 x ~12,200

• Sampled model curves for 63,65Cu, 239,240Pu
• Dim: ~2,200 x 1,000 ND• 20 candidate differential 

experiments

• 6 candidate integral 
experiments

• Dim: 6 x ~12,200

Candidate experiment 
selection

PARADIGM project

See Peter Brain’s PARADIGM poster tomorrow
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C) Challenges with Integrating Diverse Datasets

Processing challenges to wrangle the data

— Diverse energy specifications

— Large-scale computation of sensitivities

Analysis challenges for plausible uncertainties

— Discord (again)
• No evaluation adequately fits all data
• USU: unrecognized sources of uncertainty

— Missing physics
• e.g., unresolved resonances in theory models
• extensions underway

— The ML formulation must reconcile data tensions
• to avoid understating combined uncertainties.

PARADIGM project

239Pu(n,f)

sample 
from CoH 
theory

differential 
data

Physics Needs:   Advance theory and model development
 ML Needs:  Scaling workflows to larger diverse collections
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D) Statistical ML Applied to Produce Better Uncertainties

ML methods can relieve systematic tensions within and between datasets 

• E.g. shows benefit of adding Gaussian Processes uncertainties

• Combined uncertainties should be validated with statistical diagnostics

PARADIGM project
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Prior from theory

Updated to data

Arrow     
shows a wild 
side-effect of 
overly-tight 
correlations 
claimed in a 
240Pu(n,f) 
dataset

Prior from theory

Updated to data

Need:  automated methods to find and loosen overly-
     constrained data uncertainties where needed
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E) ML Applied to Optimize Experiments

ML optimization methods search and 

optimize proposed experiments to best 

reduce uncertainties and compensating errors 

EUCLID project
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D-opt measures uncertainty volume 

for correlated ND.  It is targetable to 

subsets of ND (e.g. fast energy range) 

and to specific applications suites
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ML Methods: Bayesian optimization, genetic algorithms, D-opt metric

Michaud, Isaac, et al. "Expert‐in‐the‐loop design of integral 
nuclear data experiments." Statistical Analysis and Data 
Mining: The ASA Data Science Journal 17.2 (2024): e11677.



14February 10, 2025

New AI Scientists automate model building and comparison, 

vastly accelerating scientific throughput

Large Language Model are leveraged to 

do compute-based scientific research:

• synthesize literature,

• propose experiments,

• write code and execute
• refine, and

• write a paper 

Autonomous agents could assist ND evaluation 
by implementing multiple ML methods to fuse 
diverse datasets and recommend what works 
best to deliver vetted uncertainties. 

Needs: demonstration project;  integration with AI researchers 

The field is screaming fast!
− Sakana AI (see figure at right):

github.com/SakanaAI/AI-Scientist/tree/main

− Agent Laboratory:
github.com/SamuelSchmidgall/AgentLaboratory/tree/main

− Aviary:
arxiv.org/abs/2412.21154

https://github.com/SakanaAI/AI-Scientist/tree/main
https://github.com/SamuelSchmidgall/AgentLaboratory/tree/main
https://arxiv.org/abs/2412.21154
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7 days 3 days 1 day5 days

AI methods underlying popular image & video generators 

(like DALL·E) are turning to hard science problems

Generative diffusion methods could be 

trained on a sample of ND curves from theory 

and asked to create similar curves that match 

given differential data. These tools can ingest 

vast datasets and give fast answers.

Caution: current approaches do not 

explicitly handle physical constraints 

and correlated uncertainties. ND 

applications could push the field! 

bit.ly/42HGz61

DeepMind 
GenCast 
forecasts 
of Typhoon 
Hagibis

Diverse expertise is needed for development and validation
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Summary

ML methods can assist evaluators and experimentalists to

• root out potential biases in evaluated ND

• translate discrepancies between datasets into appropriate uncertainties

• integrate analyses across diverse datasets

• optimize experiments (e.g., materials, geometry, measurements)

AI methods are exploding.  

It’s bleeding-edge, but disruptive computing science is impressive and could 

dramatically accelerate analysis of diverse and complex datasets.
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Some needs to take advantage of ML/AI:

• Further collaborations with ML scientists

− Tailor ML methods to ND analysis workflows

− Require validation of uncertainties in large-
scale analyses

• Infrastructure

− Accessible data, codes, etc. 

− Accessible worked examples 

− Shared development

• For AI (FAST moving)

− Integration with the AI researchers

− Capable computing resources

ML and AI are well-poised to continue to 
speed up and improve the ND pipeline.  

The needs are cross-
disciplinary.

Teams require
• experimentalists
• evaluators
• physicists
• data science 

researchers
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I mostly live here

Confession
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Organizations, facilities, libraries, codes
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